Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, let's go through the steps methodically.
1. Understand the given data:
- Mass of water ([tex]\( m_{\text{water}} \)[/tex]): [tex]\( 80 \)[/tex] grams
- Initial temperature of water ([tex]\( T_{\text{initial,water}} \)[/tex]): [tex]\( 30 ^\circ \text{C} \)[/tex]
- Final temperature of water ([tex]\( T_{\text{final,water}} \)[/tex]): [tex]\( 0 ^\circ \text{C} \)[/tex]
- Specific heat capacity of water ([tex]\( c_{\text{water}} \)[/tex]): [tex]\( 1 \text{ cal/g}^{\circ}\text{C} \)[/tex]
- Latent heat of fusion for ice ([tex]\( L_{\text{ice}} \)[/tex]): [tex]\( 80 \text{ cal/g} \)[/tex]
2. Calculate the heat lost by the water as it cools from [tex]\( 30 ^\circ \text{C} \)[/tex] to [tex]\( 0 ^\circ \text{C} \)[/tex]:
- The formula to calculate the heat lost ([tex]\( Q \)[/tex]) by the water is:
[tex]\[ Q = m_{\text{water}} \cdot c_{\text{water}} \cdot \Delta T \][/tex]
where [tex]\(\Delta T\)[/tex] (the temperature change) is:
[tex]\[ \Delta T = T_{\text{initial,water}} - T_{\text{final,water}} = 30 ^\circ \text{C} - 0 ^\circ \text{C} = 30 ^\circ \text{C} \][/tex]
- Substituting the given values, we get:
[tex]\[ Q = 80 \text{ g} \cdot 1 \text{ cal/g}^{\circ}\text{C} \cdot 30 ^\circ \text{C} = 2400 \text{ cal} \][/tex]
3. Calculate the mass of ice that melts:
- When the water loses heat, this heat is absorbed by the ice to melt it. The amount of heat needed to melt a mass of ice ([tex]\( m_{\text{ice}} \)[/tex]) is given by the formula:
[tex]\[ Q = m_{\text{ice}} \cdot L_{\text{ice}} \][/tex]
- Rearranging to find the mass of ice that melts, we get:
[tex]\[ m_{\text{ice}} = \frac{Q}{L_{\text{ice}}} \][/tex]
- Substituting the given values, we get:
[tex]\[ m_{\text{ice}} = \frac{2400 \text{ cal}}{80 \text{ cal/g}} = 30 \text{ g} \][/tex]
Therefore, the mass of ice that melts is [tex]\( 30 \)[/tex] grams. Thus, the correct answer is [tex]\( \boxed{30 \text{ g}} \)[/tex].
1. Understand the given data:
- Mass of water ([tex]\( m_{\text{water}} \)[/tex]): [tex]\( 80 \)[/tex] grams
- Initial temperature of water ([tex]\( T_{\text{initial,water}} \)[/tex]): [tex]\( 30 ^\circ \text{C} \)[/tex]
- Final temperature of water ([tex]\( T_{\text{final,water}} \)[/tex]): [tex]\( 0 ^\circ \text{C} \)[/tex]
- Specific heat capacity of water ([tex]\( c_{\text{water}} \)[/tex]): [tex]\( 1 \text{ cal/g}^{\circ}\text{C} \)[/tex]
- Latent heat of fusion for ice ([tex]\( L_{\text{ice}} \)[/tex]): [tex]\( 80 \text{ cal/g} \)[/tex]
2. Calculate the heat lost by the water as it cools from [tex]\( 30 ^\circ \text{C} \)[/tex] to [tex]\( 0 ^\circ \text{C} \)[/tex]:
- The formula to calculate the heat lost ([tex]\( Q \)[/tex]) by the water is:
[tex]\[ Q = m_{\text{water}} \cdot c_{\text{water}} \cdot \Delta T \][/tex]
where [tex]\(\Delta T\)[/tex] (the temperature change) is:
[tex]\[ \Delta T = T_{\text{initial,water}} - T_{\text{final,water}} = 30 ^\circ \text{C} - 0 ^\circ \text{C} = 30 ^\circ \text{C} \][/tex]
- Substituting the given values, we get:
[tex]\[ Q = 80 \text{ g} \cdot 1 \text{ cal/g}^{\circ}\text{C} \cdot 30 ^\circ \text{C} = 2400 \text{ cal} \][/tex]
3. Calculate the mass of ice that melts:
- When the water loses heat, this heat is absorbed by the ice to melt it. The amount of heat needed to melt a mass of ice ([tex]\( m_{\text{ice}} \)[/tex]) is given by the formula:
[tex]\[ Q = m_{\text{ice}} \cdot L_{\text{ice}} \][/tex]
- Rearranging to find the mass of ice that melts, we get:
[tex]\[ m_{\text{ice}} = \frac{Q}{L_{\text{ice}}} \][/tex]
- Substituting the given values, we get:
[tex]\[ m_{\text{ice}} = \frac{2400 \text{ cal}}{80 \text{ cal/g}} = 30 \text{ g} \][/tex]
Therefore, the mass of ice that melts is [tex]\( 30 \)[/tex] grams. Thus, the correct answer is [tex]\( \boxed{30 \text{ g}} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.