Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the system of linear equations:
[tex]\[ \begin{cases} x + y = 4 \\ 2x + 3y = 0 \end{cases} \][/tex]
we will follow a step-by-step approach.
### Step 1: Express one variable in terms of the other.
From the first equation, [tex]\(x + y = 4\)[/tex], we solve for [tex]\(x\)[/tex]:
[tex]\[ x = 4 - y \][/tex]
### Step 2: Substitute this expression into the second equation.
We substitute [tex]\(x = 4 - y\)[/tex] into the second equation, [tex]\(2x + 3y = 0\)[/tex]:
[tex]\[ 2(4 - y) + 3y = 0 \][/tex]
### Step 3: Simplify the equation and solve for [tex]\(y\)[/tex].
First, distribute the 2:
[tex]\[ 8 - 2y + 3y = 0 \][/tex]
Combine like terms:
[tex]\[ 8 + y = 0 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -8 \][/tex]
### Step 4: Substitute the value of [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex].
Now, substitute [tex]\(y = -8\)[/tex] back into the equation [tex]\(x = 4 - y\)[/tex]:
[tex]\[ x = 4 - (-8) \][/tex]
[tex]\[ x = 4 + 8 \][/tex]
[tex]\[ x = 12 \][/tex]
### Conclusion
The solution to the system of equations is [tex]\(x = 12\)[/tex] and [tex]\(y = -8\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{D. \, x = 12, \, y = -8} \][/tex]
[tex]\[ \begin{cases} x + y = 4 \\ 2x + 3y = 0 \end{cases} \][/tex]
we will follow a step-by-step approach.
### Step 1: Express one variable in terms of the other.
From the first equation, [tex]\(x + y = 4\)[/tex], we solve for [tex]\(x\)[/tex]:
[tex]\[ x = 4 - y \][/tex]
### Step 2: Substitute this expression into the second equation.
We substitute [tex]\(x = 4 - y\)[/tex] into the second equation, [tex]\(2x + 3y = 0\)[/tex]:
[tex]\[ 2(4 - y) + 3y = 0 \][/tex]
### Step 3: Simplify the equation and solve for [tex]\(y\)[/tex].
First, distribute the 2:
[tex]\[ 8 - 2y + 3y = 0 \][/tex]
Combine like terms:
[tex]\[ 8 + y = 0 \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -8 \][/tex]
### Step 4: Substitute the value of [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex].
Now, substitute [tex]\(y = -8\)[/tex] back into the equation [tex]\(x = 4 - y\)[/tex]:
[tex]\[ x = 4 - (-8) \][/tex]
[tex]\[ x = 4 + 8 \][/tex]
[tex]\[ x = 12 \][/tex]
### Conclusion
The solution to the system of equations is [tex]\(x = 12\)[/tex] and [tex]\(y = -8\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{D. \, x = 12, \, y = -8} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.