Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the difference of the polynomials [tex]\((12x^2 - 11y^2 - 13x) - (5x^2 - 14y^2 - 9x)\)[/tex], we need to subtract the corresponding coefficients of the like terms in each polynomial.
1. Identify like terms in the polynomials:
- The terms involving [tex]\(x^2\)[/tex]: [tex]\(12x^2\)[/tex] and [tex]\(5x^2\)[/tex]
- The terms involving [tex]\(y^2\)[/tex]: [tex]\(-11y^2\)[/tex] and [tex]\(-14y^2\)[/tex]
- The terms involving [tex]\(x\)[/tex]: [tex]\(-13x\)[/tex] and [tex]\(-9x\)[/tex]
2. Subtract the coefficients of the like terms:
- For [tex]\(x^2\)[/tex]: [tex]\(12x^2 - 5x^2 = 7x^2\)[/tex]
- For [tex]\(y^2\)[/tex]: [tex]\(-11y^2 - (-14y^2) = -11y^2 + 14y^2 = 3y^2\)[/tex]
- For [tex]\(x\)[/tex]: [tex]\(-13x - (-9x) = -13x + 9x = -4x\)[/tex]
3. Combine the results:
- The difference of the polynomials is: [tex]\(7x^2 + 3y^2 - 4x\)[/tex]
So, the resulting polynomial after subtracting the given polynomials is:
[tex]\[ 7x^2 + 3y^2 - 4x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{7x^2 + 3y^2 - 4x} \][/tex]
1. Identify like terms in the polynomials:
- The terms involving [tex]\(x^2\)[/tex]: [tex]\(12x^2\)[/tex] and [tex]\(5x^2\)[/tex]
- The terms involving [tex]\(y^2\)[/tex]: [tex]\(-11y^2\)[/tex] and [tex]\(-14y^2\)[/tex]
- The terms involving [tex]\(x\)[/tex]: [tex]\(-13x\)[/tex] and [tex]\(-9x\)[/tex]
2. Subtract the coefficients of the like terms:
- For [tex]\(x^2\)[/tex]: [tex]\(12x^2 - 5x^2 = 7x^2\)[/tex]
- For [tex]\(y^2\)[/tex]: [tex]\(-11y^2 - (-14y^2) = -11y^2 + 14y^2 = 3y^2\)[/tex]
- For [tex]\(x\)[/tex]: [tex]\(-13x - (-9x) = -13x + 9x = -4x\)[/tex]
3. Combine the results:
- The difference of the polynomials is: [tex]\(7x^2 + 3y^2 - 4x\)[/tex]
So, the resulting polynomial after subtracting the given polynomials is:
[tex]\[ 7x^2 + 3y^2 - 4x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{7x^2 + 3y^2 - 4x} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.