Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the difference of the polynomials [tex]\((12x^2 - 11y^2 - 13x) - (5x^2 - 14y^2 - 9x)\)[/tex], we need to subtract the corresponding coefficients of the like terms in each polynomial.
1. Identify like terms in the polynomials:
- The terms involving [tex]\(x^2\)[/tex]: [tex]\(12x^2\)[/tex] and [tex]\(5x^2\)[/tex]
- The terms involving [tex]\(y^2\)[/tex]: [tex]\(-11y^2\)[/tex] and [tex]\(-14y^2\)[/tex]
- The terms involving [tex]\(x\)[/tex]: [tex]\(-13x\)[/tex] and [tex]\(-9x\)[/tex]
2. Subtract the coefficients of the like terms:
- For [tex]\(x^2\)[/tex]: [tex]\(12x^2 - 5x^2 = 7x^2\)[/tex]
- For [tex]\(y^2\)[/tex]: [tex]\(-11y^2 - (-14y^2) = -11y^2 + 14y^2 = 3y^2\)[/tex]
- For [tex]\(x\)[/tex]: [tex]\(-13x - (-9x) = -13x + 9x = -4x\)[/tex]
3. Combine the results:
- The difference of the polynomials is: [tex]\(7x^2 + 3y^2 - 4x\)[/tex]
So, the resulting polynomial after subtracting the given polynomials is:
[tex]\[ 7x^2 + 3y^2 - 4x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{7x^2 + 3y^2 - 4x} \][/tex]
1. Identify like terms in the polynomials:
- The terms involving [tex]\(x^2\)[/tex]: [tex]\(12x^2\)[/tex] and [tex]\(5x^2\)[/tex]
- The terms involving [tex]\(y^2\)[/tex]: [tex]\(-11y^2\)[/tex] and [tex]\(-14y^2\)[/tex]
- The terms involving [tex]\(x\)[/tex]: [tex]\(-13x\)[/tex] and [tex]\(-9x\)[/tex]
2. Subtract the coefficients of the like terms:
- For [tex]\(x^2\)[/tex]: [tex]\(12x^2 - 5x^2 = 7x^2\)[/tex]
- For [tex]\(y^2\)[/tex]: [tex]\(-11y^2 - (-14y^2) = -11y^2 + 14y^2 = 3y^2\)[/tex]
- For [tex]\(x\)[/tex]: [tex]\(-13x - (-9x) = -13x + 9x = -4x\)[/tex]
3. Combine the results:
- The difference of the polynomials is: [tex]\(7x^2 + 3y^2 - 4x\)[/tex]
So, the resulting polynomial after subtracting the given polynomials is:
[tex]\[ 7x^2 + 3y^2 - 4x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{7x^2 + 3y^2 - 4x} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.