At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Evaluate the limit:

[tex]\[ \lim _{x \rightarrow 1} \frac{x^2-1}{x^3-1} \][/tex]


Sagot :

Let's evaluate the limit [tex]\(\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}\)[/tex]. To do so, we'll follow a step-by-step approach:

1. Rewrite the numerator and the denominator in factored form:

The numerator [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]

The denominator [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]

2. Substitute the factored forms into the limit expression:

[tex]\[ \lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x^2 + x + 1)} \][/tex]

3. Simplify the fraction by canceling common factors:

Notice that the factor [tex]\((x - 1)\)[/tex] appears in both the numerator and the denominator. Assuming [tex]\(x \neq 1\)[/tex], we can cancel [tex]\((x - 1)\)[/tex]:
[tex]\[ \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{x + 1}{x^2 + x + 1} \][/tex]

4. Evaluate the simplified limit by direct substitution:

Substitute [tex]\(x = 1\)[/tex] into the simplified expression:
[tex]\[ \frac{x + 1}{x^2 + x + 1}\bigg|_{x = 1} = \frac{1 + 1}{1^2 + 1 + 1} = \frac{2}{3} \][/tex]

Therefore, the limit is:
[tex]\[ \lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1} = \frac{2}{3} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.