Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\( x^2 + 175 = 0 \)[/tex] by taking square roots, follow the steps below:
1. Isolate [tex]\( x^2 \)[/tex] on one side of the equation:
[tex]\[ x^2 + 175 = 0 \][/tex]
Subtract 175 from both sides:
[tex]\[ x^2 = -175 \][/tex]
2. Take the square root of both sides of the equation:
[tex]\[ x = \pm \sqrt{-175} \][/tex]
Recall that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit. Therefore:
[tex]\[ x = \pm \sqrt{175} \cdot i \][/tex]
3. Simplify the expression inside the square root:
First, factor 175 into its prime components:
[tex]\[ 175 = 25 \times 7 \][/tex]
Rewrite the square root:
[tex]\[ \sqrt{175} = \sqrt{25 \times 7} \][/tex]
Use the property of square roots that allows you to take the square root of each factor individually:
[tex]\[ \sqrt{175} = \sqrt{25} \cdot \sqrt{7} \][/tex]
Since [tex]\(\sqrt{25} = 5\)[/tex]:
[tex]\[ \sqrt{175} = 5\sqrt{7} \][/tex]
4. Combine this result with the imaginary unit [tex]\(i\)[/tex]:
[tex]\[ x = \pm 5 i \sqrt{7} \][/tex]
Thus, the complete solutions to the equation [tex]\( x^2 + 175 = 0 \)[/tex] are:
[tex]\[ x = \pm 5 i \sqrt{7} \][/tex]
Therefore, the correct answer is:
a. [tex]\(\pm 5 i \sqrt{7}\)[/tex]
1. Isolate [tex]\( x^2 \)[/tex] on one side of the equation:
[tex]\[ x^2 + 175 = 0 \][/tex]
Subtract 175 from both sides:
[tex]\[ x^2 = -175 \][/tex]
2. Take the square root of both sides of the equation:
[tex]\[ x = \pm \sqrt{-175} \][/tex]
Recall that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit. Therefore:
[tex]\[ x = \pm \sqrt{175} \cdot i \][/tex]
3. Simplify the expression inside the square root:
First, factor 175 into its prime components:
[tex]\[ 175 = 25 \times 7 \][/tex]
Rewrite the square root:
[tex]\[ \sqrt{175} = \sqrt{25 \times 7} \][/tex]
Use the property of square roots that allows you to take the square root of each factor individually:
[tex]\[ \sqrt{175} = \sqrt{25} \cdot \sqrt{7} \][/tex]
Since [tex]\(\sqrt{25} = 5\)[/tex]:
[tex]\[ \sqrt{175} = 5\sqrt{7} \][/tex]
4. Combine this result with the imaginary unit [tex]\(i\)[/tex]:
[tex]\[ x = \pm 5 i \sqrt{7} \][/tex]
Thus, the complete solutions to the equation [tex]\( x^2 + 175 = 0 \)[/tex] are:
[tex]\[ x = \pm 5 i \sqrt{7} \][/tex]
Therefore, the correct answer is:
a. [tex]\(\pm 5 i \sqrt{7}\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.