Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equation of the new function after horizontally shifting the square root function [tex]$F(x) = \sqrt{x}$[/tex] to the right by eight units, we need to understand how horizontal shifts affect the equation of a function.
1. Parent Function:
The original or parent function is [tex]$F(x) = \sqrt{x}$[/tex].
2. Horizontal Shift:
A horizontal shift involves moving the graph of the function left or right along the x-axis. If we want to shift the function to the right by a certain number of units, we need to replace [tex]$x$[/tex] with [tex]$(x - h)$[/tex], where [tex]$h$[/tex] is the number of units we want to shift.
3. Shift Right by 8 Units:
If we want to shift the graph to the right by 8 units, we need to replace [tex]$x$[/tex] with [tex]$(x - 8)$[/tex]. This means our new function will be [tex]$F(x - 8)$[/tex].
4. Substitute and Simplify:
Substituting [tex]$(x - 8)$[/tex] into the original function, we get:
[tex]\[ F(x - 8) = \sqrt{x - 8} \][/tex]
Thus, the equation of the new function after shifting the square root function [tex]$F(x) = \sqrt{x}$[/tex] to the right by eight units is:
[tex]\[ F(x) = \sqrt{x - 8} \][/tex]
This new expression, [tex]$F(x) = \sqrt{x - 8}$[/tex], represents the horizontally shifted square root function.
1. Parent Function:
The original or parent function is [tex]$F(x) = \sqrt{x}$[/tex].
2. Horizontal Shift:
A horizontal shift involves moving the graph of the function left or right along the x-axis. If we want to shift the function to the right by a certain number of units, we need to replace [tex]$x$[/tex] with [tex]$(x - h)$[/tex], where [tex]$h$[/tex] is the number of units we want to shift.
3. Shift Right by 8 Units:
If we want to shift the graph to the right by 8 units, we need to replace [tex]$x$[/tex] with [tex]$(x - 8)$[/tex]. This means our new function will be [tex]$F(x - 8)$[/tex].
4. Substitute and Simplify:
Substituting [tex]$(x - 8)$[/tex] into the original function, we get:
[tex]\[ F(x - 8) = \sqrt{x - 8} \][/tex]
Thus, the equation of the new function after shifting the square root function [tex]$F(x) = \sqrt{x}$[/tex] to the right by eight units is:
[tex]\[ F(x) = \sqrt{x - 8} \][/tex]
This new expression, [tex]$F(x) = \sqrt{x - 8}$[/tex], represents the horizontally shifted square root function.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.