Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To factorize the expression [tex]\(a^2 + 2ab + b^2 - 4\)[/tex], let's proceed step-by-step.
1. Identify and group terms:
The given expression is:
[tex]\[ a^2 + 2ab + b^2 - 4 \][/tex]
We notice the first three terms form a perfect square trinomial:
[tex]\[ a^2 + 2ab + b^2 \][/tex]
2. Factor the perfect square trinomial:
The trinomial [tex]\(a^2 + 2ab + b^2\)[/tex] can be factored as:
[tex]\[ (a + b)^2 \][/tex]
Hence, the expression becomes:
[tex]\[ (a + b)^2 - 4 \][/tex]
3. Recognize the difference of squares:
The expression [tex]\((a + b)^2 - 4\)[/tex] is a difference of squares, where:
[tex]\[ (a + b)^2 - 4 = (a + b)^2 - 2^2 \][/tex]
4. Apply the difference of squares formula:
The difference of squares formula is [tex]\(x^2 - y^2 = (x - y)(x + y)\)[/tex]. Here, we can set [tex]\(x = (a + b)\)[/tex] and [tex]\(y = 2\)[/tex], yielding:
[tex]\[ ((a + b) - 2)((a + b) + 2) \][/tex]
5. Final factorized form:
So, the completely factorized form of [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] is:
[tex]\[ (a + b - 2)(a + b + 2) \][/tex]
Therefore, the expression [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] factorizes completely to [tex]\((a + b - 2)(a + b + 2)\)[/tex].
1. Identify and group terms:
The given expression is:
[tex]\[ a^2 + 2ab + b^2 - 4 \][/tex]
We notice the first three terms form a perfect square trinomial:
[tex]\[ a^2 + 2ab + b^2 \][/tex]
2. Factor the perfect square trinomial:
The trinomial [tex]\(a^2 + 2ab + b^2\)[/tex] can be factored as:
[tex]\[ (a + b)^2 \][/tex]
Hence, the expression becomes:
[tex]\[ (a + b)^2 - 4 \][/tex]
3. Recognize the difference of squares:
The expression [tex]\((a + b)^2 - 4\)[/tex] is a difference of squares, where:
[tex]\[ (a + b)^2 - 4 = (a + b)^2 - 2^2 \][/tex]
4. Apply the difference of squares formula:
The difference of squares formula is [tex]\(x^2 - y^2 = (x - y)(x + y)\)[/tex]. Here, we can set [tex]\(x = (a + b)\)[/tex] and [tex]\(y = 2\)[/tex], yielding:
[tex]\[ ((a + b) - 2)((a + b) + 2) \][/tex]
5. Final factorized form:
So, the completely factorized form of [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] is:
[tex]\[ (a + b - 2)(a + b + 2) \][/tex]
Therefore, the expression [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] factorizes completely to [tex]\((a + b - 2)(a + b + 2)\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.