Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To factorize the expression [tex]\(a^2 + 2ab + b^2 - 4\)[/tex], let's proceed step-by-step.
1. Identify and group terms:
The given expression is:
[tex]\[ a^2 + 2ab + b^2 - 4 \][/tex]
We notice the first three terms form a perfect square trinomial:
[tex]\[ a^2 + 2ab + b^2 \][/tex]
2. Factor the perfect square trinomial:
The trinomial [tex]\(a^2 + 2ab + b^2\)[/tex] can be factored as:
[tex]\[ (a + b)^2 \][/tex]
Hence, the expression becomes:
[tex]\[ (a + b)^2 - 4 \][/tex]
3. Recognize the difference of squares:
The expression [tex]\((a + b)^2 - 4\)[/tex] is a difference of squares, where:
[tex]\[ (a + b)^2 - 4 = (a + b)^2 - 2^2 \][/tex]
4. Apply the difference of squares formula:
The difference of squares formula is [tex]\(x^2 - y^2 = (x - y)(x + y)\)[/tex]. Here, we can set [tex]\(x = (a + b)\)[/tex] and [tex]\(y = 2\)[/tex], yielding:
[tex]\[ ((a + b) - 2)((a + b) + 2) \][/tex]
5. Final factorized form:
So, the completely factorized form of [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] is:
[tex]\[ (a + b - 2)(a + b + 2) \][/tex]
Therefore, the expression [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] factorizes completely to [tex]\((a + b - 2)(a + b + 2)\)[/tex].
1. Identify and group terms:
The given expression is:
[tex]\[ a^2 + 2ab + b^2 - 4 \][/tex]
We notice the first three terms form a perfect square trinomial:
[tex]\[ a^2 + 2ab + b^2 \][/tex]
2. Factor the perfect square trinomial:
The trinomial [tex]\(a^2 + 2ab + b^2\)[/tex] can be factored as:
[tex]\[ (a + b)^2 \][/tex]
Hence, the expression becomes:
[tex]\[ (a + b)^2 - 4 \][/tex]
3. Recognize the difference of squares:
The expression [tex]\((a + b)^2 - 4\)[/tex] is a difference of squares, where:
[tex]\[ (a + b)^2 - 4 = (a + b)^2 - 2^2 \][/tex]
4. Apply the difference of squares formula:
The difference of squares formula is [tex]\(x^2 - y^2 = (x - y)(x + y)\)[/tex]. Here, we can set [tex]\(x = (a + b)\)[/tex] and [tex]\(y = 2\)[/tex], yielding:
[tex]\[ ((a + b) - 2)((a + b) + 2) \][/tex]
5. Final factorized form:
So, the completely factorized form of [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] is:
[tex]\[ (a + b - 2)(a + b + 2) \][/tex]
Therefore, the expression [tex]\(a^2 + 2ab + b^2 - 4\)[/tex] factorizes completely to [tex]\((a + b - 2)(a + b + 2)\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.