Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the given equation step by step.
The given equation is:
[tex]\[ (15 - 5x) - \log(3x - 2) - 2 = 0 \][/tex]
### Step 1: Simplify the Equation
First, we simplify the expression within the equation:
[tex]\[ 15 - 5x - \log(3x - 2) - 2 = 0 \][/tex]
Combine constants:
[tex]\[ (15 - 2) - 5x - \log(3x - 2) = 0 \][/tex]
[tex]\[ 13 - 5x - \log(3x - 2) = 0 \][/tex]
### Step 2: Isolate the Logarithmic Function
Next, move the logarithmic term to one side of the equation:
[tex]\[ 13 - 5x = \log(3x - 2) \][/tex]
### Step 3: Exponentiate Both Sides
To eliminate the logarithmic function, we exponentiate both sides with base [tex]\(e\)[/tex]:
[tex]\[ e^{13 - 5x} = 3x - 2 \][/tex]
### Step 4: Solve for [tex]\(x\)[/tex]
Now our equation is:
[tex]\[ e^{13 - 5x} = 3x - 2 \][/tex]
This is a transcendental equation involving [tex]\(x\)[/tex] in both the exponent and base of different terms. Such equations typically do not have a straightforward algebraic solution.
### Step 5: Use the Lambert W Function
The Lambert W function, denoted as [tex]\(W(z)\)[/tex], satisfies [tex]\(Z = W(Z)e^{W(Z)}\)[/tex]. We can manipulate the equation to apply this function.
Rewriting:
[tex]\[ e^{13} \cdot e^{-5x} = 3x - 2 \][/tex]
Let’s set:
[tex]\[ u = -5x \][/tex]
Substituting back into the equation:
[tex]\[ e^{13} \cdot e^{u} = 3\left(\frac{-u}{5}\right) - 2 \][/tex]
Simplifying further:
[tex]\[ e^{13} \cdot e^{u} = -\frac{3u}{5} - 2 \][/tex]
After isolating [tex]\( e^u \)[/tex]:
[tex]\[ e^{13} \cdot e^{u} + 2 = -\frac{3u}{5} \][/tex]
Multiply through by 5:
[tex]\[ 5e^{13}e^u + 10 = -3u \][/tex]
Now, to isolate [tex]\(e^{u}\)[/tex], we have:
[tex]\[ 5e^{u + 13} = -3u - 10 \][/tex]
Express [tex]\(u\)[/tex] as:
[tex]\[ u = \frac{-10 - 3W \left( \frac{5e^{13}}{-3} \right) }{-3} \][/tex]
Thus:
[tex]\[ x = \frac{2}{3} + \frac{1}{5} W\left( \frac{5e^{29/3}}{3} \right) \][/tex]
### Conclusion
Hence, the solution to the equation [tex]\( (15 - 5x) - \log(3x - 2) - 2 = 0 \)[/tex] is given by:
[tex]\[ x = \frac{2}{3} + \frac{1}{5}W\left(\frac{5e^{29/3}}{3}\right) \][/tex]
This solution involves the Lambert W function, which is typically evaluated using numerical methods or special function libraries in mathematical software.
The given equation is:
[tex]\[ (15 - 5x) - \log(3x - 2) - 2 = 0 \][/tex]
### Step 1: Simplify the Equation
First, we simplify the expression within the equation:
[tex]\[ 15 - 5x - \log(3x - 2) - 2 = 0 \][/tex]
Combine constants:
[tex]\[ (15 - 2) - 5x - \log(3x - 2) = 0 \][/tex]
[tex]\[ 13 - 5x - \log(3x - 2) = 0 \][/tex]
### Step 2: Isolate the Logarithmic Function
Next, move the logarithmic term to one side of the equation:
[tex]\[ 13 - 5x = \log(3x - 2) \][/tex]
### Step 3: Exponentiate Both Sides
To eliminate the logarithmic function, we exponentiate both sides with base [tex]\(e\)[/tex]:
[tex]\[ e^{13 - 5x} = 3x - 2 \][/tex]
### Step 4: Solve for [tex]\(x\)[/tex]
Now our equation is:
[tex]\[ e^{13 - 5x} = 3x - 2 \][/tex]
This is a transcendental equation involving [tex]\(x\)[/tex] in both the exponent and base of different terms. Such equations typically do not have a straightforward algebraic solution.
### Step 5: Use the Lambert W Function
The Lambert W function, denoted as [tex]\(W(z)\)[/tex], satisfies [tex]\(Z = W(Z)e^{W(Z)}\)[/tex]. We can manipulate the equation to apply this function.
Rewriting:
[tex]\[ e^{13} \cdot e^{-5x} = 3x - 2 \][/tex]
Let’s set:
[tex]\[ u = -5x \][/tex]
Substituting back into the equation:
[tex]\[ e^{13} \cdot e^{u} = 3\left(\frac{-u}{5}\right) - 2 \][/tex]
Simplifying further:
[tex]\[ e^{13} \cdot e^{u} = -\frac{3u}{5} - 2 \][/tex]
After isolating [tex]\( e^u \)[/tex]:
[tex]\[ e^{13} \cdot e^{u} + 2 = -\frac{3u}{5} \][/tex]
Multiply through by 5:
[tex]\[ 5e^{13}e^u + 10 = -3u \][/tex]
Now, to isolate [tex]\(e^{u}\)[/tex], we have:
[tex]\[ 5e^{u + 13} = -3u - 10 \][/tex]
Express [tex]\(u\)[/tex] as:
[tex]\[ u = \frac{-10 - 3W \left( \frac{5e^{13}}{-3} \right) }{-3} \][/tex]
Thus:
[tex]\[ x = \frac{2}{3} + \frac{1}{5} W\left( \frac{5e^{29/3}}{3} \right) \][/tex]
### Conclusion
Hence, the solution to the equation [tex]\( (15 - 5x) - \log(3x - 2) - 2 = 0 \)[/tex] is given by:
[tex]\[ x = \frac{2}{3} + \frac{1}{5}W\left(\frac{5e^{29/3}}{3}\right) \][/tex]
This solution involves the Lambert W function, which is typically evaluated using numerical methods or special function libraries in mathematical software.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.