At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the equation [tex]\( V = \sqrt[3]{\frac{a x^2 h}{b - h}} \)[/tex] for [tex]\( h \)[/tex]. Follow these steps:
1. Given the equation:
[tex]\[ V = \sqrt[3]{\frac{a x^2 h}{b - h}} \][/tex]
2. To eliminate the cube root, cube both sides of the equation:
[tex]\[ V^3 = \left( \sqrt[3]{\frac{a x^2 h}{b - h}} \right)^3 \][/tex]
[tex]\[ V^3 = \frac{a x^2 h}{b - h} \][/tex]
3. Now, to isolate [tex]\( h \)[/tex] on one side, multiply both sides of the equation by [tex]\( b - h \)[/tex]:
[tex]\[ V^3 (b - h) = a x^2 h \][/tex]
4. Distribute [tex]\( V^3 \)[/tex] on the left-hand side:
[tex]\[ V^3 b - V^3 h = a x^2 h \][/tex]
5. Gather all terms involving [tex]\( h \)[/tex] on one side of the equation:
[tex]\[ V^3 b = a x^2 h + V^3 h \][/tex]
6. Factor out [tex]\( h \)[/tex] from the terms on the right-hand side:
[tex]\[ V^3 b = h (a x^2 + V^3) \][/tex]
7. Finally, solve for [tex]\( h \)[/tex] by dividing both sides by [tex]\( a x^2 + V^3 \)[/tex]:
[tex]\[ h = \frac{V^3 b}{a x^2 + V^3} \][/tex]
Hence, the value of [tex]\( h \)[/tex] expressed in terms of [tex]\( V \)[/tex], [tex]\( a \)[/tex], [tex]\( x \)[/tex], and [tex]\( b \)[/tex] is:
[tex]\[ h = \frac{V^3 b}{a x^2 + V^3} \][/tex]
1. Given the equation:
[tex]\[ V = \sqrt[3]{\frac{a x^2 h}{b - h}} \][/tex]
2. To eliminate the cube root, cube both sides of the equation:
[tex]\[ V^3 = \left( \sqrt[3]{\frac{a x^2 h}{b - h}} \right)^3 \][/tex]
[tex]\[ V^3 = \frac{a x^2 h}{b - h} \][/tex]
3. Now, to isolate [tex]\( h \)[/tex] on one side, multiply both sides of the equation by [tex]\( b - h \)[/tex]:
[tex]\[ V^3 (b - h) = a x^2 h \][/tex]
4. Distribute [tex]\( V^3 \)[/tex] on the left-hand side:
[tex]\[ V^3 b - V^3 h = a x^2 h \][/tex]
5. Gather all terms involving [tex]\( h \)[/tex] on one side of the equation:
[tex]\[ V^3 b = a x^2 h + V^3 h \][/tex]
6. Factor out [tex]\( h \)[/tex] from the terms on the right-hand side:
[tex]\[ V^3 b = h (a x^2 + V^3) \][/tex]
7. Finally, solve for [tex]\( h \)[/tex] by dividing both sides by [tex]\( a x^2 + V^3 \)[/tex]:
[tex]\[ h = \frac{V^3 b}{a x^2 + V^3} \][/tex]
Hence, the value of [tex]\( h \)[/tex] expressed in terms of [tex]\( V \)[/tex], [tex]\( a \)[/tex], [tex]\( x \)[/tex], and [tex]\( b \)[/tex] is:
[tex]\[ h = \frac{V^3 b}{a x^2 + V^3} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.