Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the result for the given sets, we need to perform a couple of set operations. Let's go through the steps in detail.
Given the sets:
[tex]\[ U = \{28, 29, 30, 31, 32, 33, 34, 35, 36, 37\} \][/tex]
[tex]\[ A = \{31, 32, 33, 34\} \][/tex]
[tex]\[ B = \{28, 30, 32, 34, 36\} \][/tex]
[tex]\[ C = \{29, 31, 32, 36, 37\} \][/tex]
### Step 1: Find [tex]\( A \cup B \)[/tex] (Union of A and B)
The union of two sets [tex]\( A \cup B \)[/tex] contains all the elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.
[tex]\[ A = \{31, 32, 33, 34\} \][/tex]
[tex]\[ B = \{28, 30, 32, 34, 36\} \][/tex]
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
This union operation includes all distinct elements from both sets.
### Step 2: Find [tex]\( (A \cup B) \cap C \)[/tex] (Intersection of [tex]\( A \cup B \)[/tex] with C)
The intersection of two sets [tex]\( (A \cup B) \cap C \)[/tex] contains all the elements that are in both [tex]\( A \cup B \)[/tex] and [tex]\( C \)[/tex].
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
[tex]\[ C = \{29, 31, 32, 36, 37\} \][/tex]
Now, identify the elements common to both [tex]\( A \cup B \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ (A \cup B) \cap C = \{31, 32, 36\} \][/tex]
So, the steps yield the following results:
1. The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{28, 30, 31, 32, 33, 34, 36\} \)[/tex].
2. The intersection of [tex]\( (A \cup B) \)[/tex] with [tex]\( C \)[/tex] is [tex]\( \{31, 32, 36\} \)[/tex].
Thus, the final sets we found are:
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
[tex]\[ (A \cup B) \cap C = \{31, 32, 36\} \][/tex]
Given the sets:
[tex]\[ U = \{28, 29, 30, 31, 32, 33, 34, 35, 36, 37\} \][/tex]
[tex]\[ A = \{31, 32, 33, 34\} \][/tex]
[tex]\[ B = \{28, 30, 32, 34, 36\} \][/tex]
[tex]\[ C = \{29, 31, 32, 36, 37\} \][/tex]
### Step 1: Find [tex]\( A \cup B \)[/tex] (Union of A and B)
The union of two sets [tex]\( A \cup B \)[/tex] contains all the elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.
[tex]\[ A = \{31, 32, 33, 34\} \][/tex]
[tex]\[ B = \{28, 30, 32, 34, 36\} \][/tex]
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
This union operation includes all distinct elements from both sets.
### Step 2: Find [tex]\( (A \cup B) \cap C \)[/tex] (Intersection of [tex]\( A \cup B \)[/tex] with C)
The intersection of two sets [tex]\( (A \cup B) \cap C \)[/tex] contains all the elements that are in both [tex]\( A \cup B \)[/tex] and [tex]\( C \)[/tex].
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
[tex]\[ C = \{29, 31, 32, 36, 37\} \][/tex]
Now, identify the elements common to both [tex]\( A \cup B \)[/tex] and [tex]\( C \)[/tex]:
[tex]\[ (A \cup B) \cap C = \{31, 32, 36\} \][/tex]
So, the steps yield the following results:
1. The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{28, 30, 31, 32, 33, 34, 36\} \)[/tex].
2. The intersection of [tex]\( (A \cup B) \)[/tex] with [tex]\( C \)[/tex] is [tex]\( \{31, 32, 36\} \)[/tex].
Thus, the final sets we found are:
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
[tex]\[ (A \cup B) \cap C = \{31, 32, 36\} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.