Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Let
[tex]\[
\begin{array}{l}
U = \{28, 29, 30, 31, 32, 33, 34, 35, 36, 37\} \\
A = \{31, 32, 33, 34\} \\
B = \{28, 30, 32, 34, 36\} \\
C = \{29, 31, 32, 36, 37\}
\end{array}
\][/tex]

Find the set [tex]\( (A \cap B) \cup C \)[/tex].


Sagot :

To find the result for the given sets, we need to perform a couple of set operations. Let's go through the steps in detail.

Given the sets:
[tex]\[ U = \{28, 29, 30, 31, 32, 33, 34, 35, 36, 37\} \][/tex]
[tex]\[ A = \{31, 32, 33, 34\} \][/tex]
[tex]\[ B = \{28, 30, 32, 34, 36\} \][/tex]
[tex]\[ C = \{29, 31, 32, 36, 37\} \][/tex]

### Step 1: Find [tex]\( A \cup B \)[/tex] (Union of A and B)
The union of two sets [tex]\( A \cup B \)[/tex] contains all the elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.

[tex]\[ A = \{31, 32, 33, 34\} \][/tex]
[tex]\[ B = \{28, 30, 32, 34, 36\} \][/tex]

[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]

This union operation includes all distinct elements from both sets.

### Step 2: Find [tex]\( (A \cup B) \cap C \)[/tex] (Intersection of [tex]\( A \cup B \)[/tex] with C)
The intersection of two sets [tex]\( (A \cup B) \cap C \)[/tex] contains all the elements that are in both [tex]\( A \cup B \)[/tex] and [tex]\( C \)[/tex].

[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
[tex]\[ C = \{29, 31, 32, 36, 37\} \][/tex]

Now, identify the elements common to both [tex]\( A \cup B \)[/tex] and [tex]\( C \)[/tex]:

[tex]\[ (A \cup B) \cap C = \{31, 32, 36\} \][/tex]

So, the steps yield the following results:
1. The union of sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( \{28, 30, 31, 32, 33, 34, 36\} \)[/tex].
2. The intersection of [tex]\( (A \cup B) \)[/tex] with [tex]\( C \)[/tex] is [tex]\( \{31, 32, 36\} \)[/tex].

Thus, the final sets we found are:
[tex]\[ A \cup B = \{28, 30, 31, 32, 33, 34, 36\} \][/tex]
[tex]\[ (A \cup B) \cap C = \{31, 32, 36\} \][/tex]