Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's follow a step-by-step approach to solve this system of linear equations using the elimination method.
The system of equations is:
[tex]\[ \begin{aligned} 1) \quad -2x + 4y &= 16 \\ 2) \quad 2x + 2y &= 8 \end{aligned} \][/tex]
Step 1: Eliminate one of the variables
To eliminate [tex]\( x \)[/tex], we can add the two equations together. This is because the coefficients of [tex]\( x \)[/tex] in the two equations are opposites ([tex]\(-2x\)[/tex] and [tex]\(2x\)[/tex]).
[tex]\[ (-2x + 4y) + (2x + 2y) = 16 + 8 \][/tex]
Step 2: Simplify the resulting equation
By combining like terms, we have:
[tex]\[ -2x + 2x + 4y + 2y = 16 + 8 \][/tex]
This simplifies to:
[tex]\[ 6y = 24 \][/tex]
Step 3: Solve for [tex]\( y \)[/tex]
Divide both sides of the equation by 6:
[tex]\[ y = \frac{24}{6} \][/tex]
[tex]\[ y = 4 \][/tex]
Step 4: Substitute [tex]\( y \)[/tex] back into one of the original equations
We can use either of the original equations to solve for [tex]\( x \)[/tex]. Let's use the second equation:
[tex]\[ 2x + 2y = 8 \][/tex]
Substitute [tex]\( y = 4 \)[/tex]:
[tex]\[ 2x + 2(4) = 8 \][/tex]
[tex]\[ 2x + 8 = 8 \][/tex]
Step 5: Solve for [tex]\( x \)[/tex]
Subtract 8 from both sides:
[tex]\[ 2x = 0 \][/tex]
Divide both sides by 2:
[tex]\[ x = 0 \][/tex]
Conclusion:
The solution to the system of equations is the ordered pair [tex]\((0, 4)\)[/tex].
By examining the list of options:
[tex]\((0,4)\)[/tex]
[tex]\((0,8)\)[/tex]
[tex]\((4,0)\)[/tex]
[tex]\((8,0)\)[/tex]
The correct solution is [tex]\((0, 4)\)[/tex].
The system of equations is:
[tex]\[ \begin{aligned} 1) \quad -2x + 4y &= 16 \\ 2) \quad 2x + 2y &= 8 \end{aligned} \][/tex]
Step 1: Eliminate one of the variables
To eliminate [tex]\( x \)[/tex], we can add the two equations together. This is because the coefficients of [tex]\( x \)[/tex] in the two equations are opposites ([tex]\(-2x\)[/tex] and [tex]\(2x\)[/tex]).
[tex]\[ (-2x + 4y) + (2x + 2y) = 16 + 8 \][/tex]
Step 2: Simplify the resulting equation
By combining like terms, we have:
[tex]\[ -2x + 2x + 4y + 2y = 16 + 8 \][/tex]
This simplifies to:
[tex]\[ 6y = 24 \][/tex]
Step 3: Solve for [tex]\( y \)[/tex]
Divide both sides of the equation by 6:
[tex]\[ y = \frac{24}{6} \][/tex]
[tex]\[ y = 4 \][/tex]
Step 4: Substitute [tex]\( y \)[/tex] back into one of the original equations
We can use either of the original equations to solve for [tex]\( x \)[/tex]. Let's use the second equation:
[tex]\[ 2x + 2y = 8 \][/tex]
Substitute [tex]\( y = 4 \)[/tex]:
[tex]\[ 2x + 2(4) = 8 \][/tex]
[tex]\[ 2x + 8 = 8 \][/tex]
Step 5: Solve for [tex]\( x \)[/tex]
Subtract 8 from both sides:
[tex]\[ 2x = 0 \][/tex]
Divide both sides by 2:
[tex]\[ x = 0 \][/tex]
Conclusion:
The solution to the system of equations is the ordered pair [tex]\((0, 4)\)[/tex].
By examining the list of options:
[tex]\((0,4)\)[/tex]
[tex]\((0,8)\)[/tex]
[tex]\((4,0)\)[/tex]
[tex]\((8,0)\)[/tex]
The correct solution is [tex]\((0, 4)\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.