Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the system of equations:
[tex]\[ \begin{cases} 3x - 4y = -6 \\ 2x + 4y = 16 \end{cases} \][/tex]
we can use the method of elimination to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
### Step-by-Step Solution
1. Add the equations to eliminate [tex]\( y \)[/tex]:
[tex]\[ 3x - 4y = -6 \][/tex]
[tex]\[ 2x + 4y = 16 \][/tex]
If we add these two equations together, the [tex]\( y \)[/tex]-terms will cancel out:
[tex]\[ (3x - 4y) + (2x + 4y) = -6 + 16 \\ 3x + 2x - 4y + 4y = -6 + 16 \\ 5x = 10 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 5x = 10 \\ x = \frac{10}{5} \\ x = 2 \][/tex]
3. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:
Let's use the second equation:
[tex]\[ 2x + 4y = 16 \][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 2(2) + 4y = 16 \\ 4 + 4y = 16 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
[tex]\[ 4 + 4y = 16 \\ 4y = 16 - 4 \\ 4y = 12 \\ y = \frac{12}{4} \\ y = 3 \][/tex]
### Solution
The solution to the system of equations is:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = 3 \][/tex]
Thus, the solution is [tex]\((2, 3)\)[/tex].
[tex]\[ \begin{cases} 3x - 4y = -6 \\ 2x + 4y = 16 \end{cases} \][/tex]
we can use the method of elimination to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
### Step-by-Step Solution
1. Add the equations to eliminate [tex]\( y \)[/tex]:
[tex]\[ 3x - 4y = -6 \][/tex]
[tex]\[ 2x + 4y = 16 \][/tex]
If we add these two equations together, the [tex]\( y \)[/tex]-terms will cancel out:
[tex]\[ (3x - 4y) + (2x + 4y) = -6 + 16 \\ 3x + 2x - 4y + 4y = -6 + 16 \\ 5x = 10 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 5x = 10 \\ x = \frac{10}{5} \\ x = 2 \][/tex]
3. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:
Let's use the second equation:
[tex]\[ 2x + 4y = 16 \][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 2(2) + 4y = 16 \\ 4 + 4y = 16 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
[tex]\[ 4 + 4y = 16 \\ 4y = 16 - 4 \\ 4y = 12 \\ y = \frac{12}{4} \\ y = 3 \][/tex]
### Solution
The solution to the system of equations is:
[tex]\[ x = 2 \][/tex]
[tex]\[ y = 3 \][/tex]
Thus, the solution is [tex]\((2, 3)\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.