Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the value of [tex]\((g \circ f)(4)\)[/tex], we need to follow a few steps to determine the result.
### Step 1: Calculate [tex]\(f(4)\)[/tex]
Given the function [tex]\(f(x) = -x^3\)[/tex], we need to substitute [tex]\(x = 4\)[/tex] into this function:
[tex]\[ f(4) = -(4)^3 = -64 \][/tex]
So, [tex]\(f(4) = -64\)[/tex].
### Step 2: Calculate [tex]\(g(f(4))\)[/tex]
Next, we use the value obtained from [tex]\(f(4)\)[/tex] as the input for the function [tex]\(g\)[/tex]. The function [tex]\(g(x)\)[/tex] is defined as:
[tex]\[ g(x) = \left| \frac{1}{8}x - 1 \right| \][/tex]
Here, we substitute [tex]\(x = -64\)[/tex] into the function [tex]\(g\)[/tex]:
[tex]\[ g(-64) = \left| \frac{1}{8} \cdot (-64) - 1 \right| \][/tex]
Perform the multiplication first:
[tex]\[ \frac{1}{8} \cdot (-64) = -8 \][/tex]
Then, substitute back into the equation:
[tex]\[ g(-64) = \left| -8 - 1 \right| \][/tex]
Simplify inside the absolute value:
[tex]\[ g(-64) = \left| -9 \right| = 9 \][/tex]
So, [tex]\(g(f(4)) = 9\)[/tex].
### Conclusion
The value of [tex]\((g \circ f)(4)\)[/tex] is [tex]\(\boxed{9}\)[/tex].
### Step 1: Calculate [tex]\(f(4)\)[/tex]
Given the function [tex]\(f(x) = -x^3\)[/tex], we need to substitute [tex]\(x = 4\)[/tex] into this function:
[tex]\[ f(4) = -(4)^3 = -64 \][/tex]
So, [tex]\(f(4) = -64\)[/tex].
### Step 2: Calculate [tex]\(g(f(4))\)[/tex]
Next, we use the value obtained from [tex]\(f(4)\)[/tex] as the input for the function [tex]\(g\)[/tex]. The function [tex]\(g(x)\)[/tex] is defined as:
[tex]\[ g(x) = \left| \frac{1}{8}x - 1 \right| \][/tex]
Here, we substitute [tex]\(x = -64\)[/tex] into the function [tex]\(g\)[/tex]:
[tex]\[ g(-64) = \left| \frac{1}{8} \cdot (-64) - 1 \right| \][/tex]
Perform the multiplication first:
[tex]\[ \frac{1}{8} \cdot (-64) = -8 \][/tex]
Then, substitute back into the equation:
[tex]\[ g(-64) = \left| -8 - 1 \right| \][/tex]
Simplify inside the absolute value:
[tex]\[ g(-64) = \left| -9 \right| = 9 \][/tex]
So, [tex]\(g(f(4)) = 9\)[/tex].
### Conclusion
The value of [tex]\((g \circ f)(4)\)[/tex] is [tex]\(\boxed{9}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.