Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the given system of linear equations step-by-step:
The system of equations is:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -4x + 4y = -24 \)[/tex]
First, let's simplify the second equation. Notice that we can divide every term by 4 to simplify it. This gives:
[tex]\[ -4x + 4y = -24 \][/tex]
[tex]\[ \frac{-4x}{4} + \frac{4y}{4} = \frac{-24}{4} \][/tex]
[tex]\[ -x + y = -6 \][/tex]
Now we have:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -x + y = -6 \)[/tex]
Notice that these two equations are identical. This means that the system doesn't change the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and there's essentially a redundant equation here.
Let's isolate one variable from the first equation (or the second, since they are the same). For instance, we can solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ -x + y = -6 \][/tex]
Rearrange it to solve for [tex]\( x \)[/tex]:
[tex]\[ -x = -6 - y \][/tex]
Multiply both sides by -1:
[tex]\[ x = 6 + y \][/tex]
So, the solution to the system of equations expresses [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ \boxed{x = y + 6} \][/tex]
Thus, for any value of [tex]\( y \)[/tex], the corresponding [tex]\( x \)[/tex] value is [tex]\( y + 6 \)[/tex]. This means there are infinitely many solutions, as [tex]\( y \)[/tex] can take on any real number value and [tex]\( x \)[/tex] will adjust accordingly following this relationship.
The system of equations is:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -4x + 4y = -24 \)[/tex]
First, let's simplify the second equation. Notice that we can divide every term by 4 to simplify it. This gives:
[tex]\[ -4x + 4y = -24 \][/tex]
[tex]\[ \frac{-4x}{4} + \frac{4y}{4} = \frac{-24}{4} \][/tex]
[tex]\[ -x + y = -6 \][/tex]
Now we have:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -x + y = -6 \)[/tex]
Notice that these two equations are identical. This means that the system doesn't change the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and there's essentially a redundant equation here.
Let's isolate one variable from the first equation (or the second, since they are the same). For instance, we can solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ -x + y = -6 \][/tex]
Rearrange it to solve for [tex]\( x \)[/tex]:
[tex]\[ -x = -6 - y \][/tex]
Multiply both sides by -1:
[tex]\[ x = 6 + y \][/tex]
So, the solution to the system of equations expresses [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ \boxed{x = y + 6} \][/tex]
Thus, for any value of [tex]\( y \)[/tex], the corresponding [tex]\( x \)[/tex] value is [tex]\( y + 6 \)[/tex]. This means there are infinitely many solutions, as [tex]\( y \)[/tex] can take on any real number value and [tex]\( x \)[/tex] will adjust accordingly following this relationship.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.