Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the given system of linear equations step-by-step:
The system of equations is:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -4x + 4y = -24 \)[/tex]
First, let's simplify the second equation. Notice that we can divide every term by 4 to simplify it. This gives:
[tex]\[ -4x + 4y = -24 \][/tex]
[tex]\[ \frac{-4x}{4} + \frac{4y}{4} = \frac{-24}{4} \][/tex]
[tex]\[ -x + y = -6 \][/tex]
Now we have:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -x + y = -6 \)[/tex]
Notice that these two equations are identical. This means that the system doesn't change the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and there's essentially a redundant equation here.
Let's isolate one variable from the first equation (or the second, since they are the same). For instance, we can solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ -x + y = -6 \][/tex]
Rearrange it to solve for [tex]\( x \)[/tex]:
[tex]\[ -x = -6 - y \][/tex]
Multiply both sides by -1:
[tex]\[ x = 6 + y \][/tex]
So, the solution to the system of equations expresses [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ \boxed{x = y + 6} \][/tex]
Thus, for any value of [tex]\( y \)[/tex], the corresponding [tex]\( x \)[/tex] value is [tex]\( y + 6 \)[/tex]. This means there are infinitely many solutions, as [tex]\( y \)[/tex] can take on any real number value and [tex]\( x \)[/tex] will adjust accordingly following this relationship.
The system of equations is:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -4x + 4y = -24 \)[/tex]
First, let's simplify the second equation. Notice that we can divide every term by 4 to simplify it. This gives:
[tex]\[ -4x + 4y = -24 \][/tex]
[tex]\[ \frac{-4x}{4} + \frac{4y}{4} = \frac{-24}{4} \][/tex]
[tex]\[ -x + y = -6 \][/tex]
Now we have:
1. [tex]\( -x + y = -6 \)[/tex]
2. [tex]\( -x + y = -6 \)[/tex]
Notice that these two equations are identical. This means that the system doesn't change the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and there's essentially a redundant equation here.
Let's isolate one variable from the first equation (or the second, since they are the same). For instance, we can solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ -x + y = -6 \][/tex]
Rearrange it to solve for [tex]\( x \)[/tex]:
[tex]\[ -x = -6 - y \][/tex]
Multiply both sides by -1:
[tex]\[ x = 6 + y \][/tex]
So, the solution to the system of equations expresses [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ \boxed{x = y + 6} \][/tex]
Thus, for any value of [tex]\( y \)[/tex], the corresponding [tex]\( x \)[/tex] value is [tex]\( y + 6 \)[/tex]. This means there are infinitely many solutions, as [tex]\( y \)[/tex] can take on any real number value and [tex]\( x \)[/tex] will adjust accordingly following this relationship.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.