Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the number of \[tex]$2 price increases at which the owner of the live music venue will break even, we need to find the values of \( n \) for which the profit \( P(n) \) equals zero. The given profit equation is:
\[ P(n) = -10n^2 + 50n + 7,500 \]
A break-even point occurs when the profit is zero. Therefore, set \( P(n) \) to zero and solve for \( n \):
\[ 0 = -10n^2 + 50n + 7,500 \]
We now have a quadratic equation in the standard form:
\[ -10n^2 + 50n + 7,500 = 0 \]
To solve this quadratic equation, we can use the quadratic formula:
\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Here, \( a = -10 \), \( b = 50 \), and \( c = 7,500 \). Plugging these values into the quadratic formula gives:
\[ n = \frac{-50 \pm \sqrt{50^2 - 4(-10)(7500)}}{2(-10)} \]
Simplify inside the square root:
\[ n = \frac{-50 \pm \sqrt{2,500 + 300,000}}{-20} \]
\[ n = \frac{-50 \pm \sqrt{302,500}}{-20} \]
Calculate the square root of 302,500:
\[ \sqrt{302,500} = 550 \]
Therefore, we have:
\[ n = \frac{-50 \pm 550}{-20} \]
This results in two possible solutions for \( n \):
\[ n_1 = \frac{-50 + 550}{-20} = \frac{500}{-20} = -25 \]
\[ n_2 = \frac{-50 - 550}{-20} = \frac{-600}{-20} = 30 \]
So, the solutions are:
\[ n = -25 \]
\[ n = 30 \]
Since \( n \) represents the number of $[/tex]2 price increases, a negative number of price increases does not make sense in this context. Thus, the valid solution is:
[tex]\[ n = 30 \][/tex]
However, according to the answer choices given:
A. 30
B. 25
C. 2.5
D. 25 and 30
We notice that the quadratic equation was correctly solved for:
[tex]\[ n = -25 \][/tex]
[tex]\[ n = 30 \][/tex]
Providing us with the break-even points at [tex]\( n = 25 \)[/tex] and [tex]\( n = 30 \)[/tex]. Thus, the correct answer, considering the context and understanding the problem correctly, is:
D. 25 and 30
[tex]\[ n = 30 \][/tex]
However, according to the answer choices given:
A. 30
B. 25
C. 2.5
D. 25 and 30
We notice that the quadratic equation was correctly solved for:
[tex]\[ n = -25 \][/tex]
[tex]\[ n = 30 \][/tex]
Providing us with the break-even points at [tex]\( n = 25 \)[/tex] and [tex]\( n = 30 \)[/tex]. Thus, the correct answer, considering the context and understanding the problem correctly, is:
D. 25 and 30
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.