At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A coin and a six-sided die are tossed.

Event A: The coin lands on heads.
Event B: The die lands on 1, 3, or 6.

What is the probability that both events will occur?

For Independent Events: [tex]P(A \text{ and } B) = P(A) \cdot P(B)[/tex]

[tex]P(A \text{ and } B) = \, ? [/tex]

Give your answer in simplest form.


Sagot :

Sure, let's solve this step by step.

### Step 1: Understand the Probability of Event A
Event A is that the coin lands on heads. Since a fair coin has two sides (heads and tails), the probability of the coin landing on heads is:
[tex]\[ P(A) = \frac{1}{2} \][/tex]

### Step 2: Understand the Probability of Event B
Event B is that the die lands on 1, 3, or 6. A fair six-sided die has six faces, numbered 1 through 6. The favorable outcomes for Event B are:
- Landing on 1
- Landing on 3
- Landing on 6

So, there are 3 favorable outcomes out of a total of 6 possible outcomes. Therefore, the probability of Event B is:
[tex]\[ P(B) = \frac{3}{6} \][/tex]
This fraction simplifies to:
[tex]\[ P(B) = \frac{1}{2} \][/tex]

### Step 3: Combining the Probabilities of Independent Events
To find the probability that both events will occur (i.e., the coin lands on heads and the die lands on 1, 3, or 6), we use the formula for the probability of independent events:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]

### Step 4: Calculate the Combined Probability
Now, substitute the probabilities we found:
[tex]\[ P(A) = \frac{1}{2} \][/tex]
[tex]\[ P(B) = \frac{1}{2} \][/tex]

Therefore:
[tex]\[ P(A \text{ and } B) = \frac{1}{2} \cdot \frac{1}{2} \][/tex]
[tex]\[ P(A \text{ and } B) = \frac{1}{4} \][/tex]

The probability that both the coin will land on heads and the die will land on 1, 3, or 6 is:
[tex]\[ P(A \text{ and } B) = \frac{1}{4} \][/tex]

In decimal form, this is:
[tex]\[ P(A \text{ and } B) = 0.25 \][/tex]

So, the answer in its simplest form is:
[tex]\[ \boxed{\frac{1}{4}} \][/tex]