Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve this step by step:
1. Identify the Individual Probabilities:
- Event [tex]\( A \)[/tex]: The first coin lands on heads.
The probability of a coin landing on heads is [tex]\( P(A) = 0.5 \)[/tex] or [tex]\( \frac{1}{2} \)[/tex].
- Event [tex]\( B \)[/tex]: The second coin lands on tails.
The probability of a coin landing on tails is [tex]\( P(B) = 0.5 \)[/tex] or [tex]\( \frac{1}{2} \)[/tex].
2. Use the Formula for Independent Events:
Since the events are independent, the probability of both events [tex]\(A\)[/tex] and [tex]\(B\)[/tex] occurring can be found using the formula:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
3. Substitute the Known Probabilities:
[tex]\[ P(A \text{ and } B) = 0.5 \cdot 0.5 \][/tex]
4. Calculate the Result:
[tex]\[ P(A \text{ and } B) = 0.25 \][/tex]
5. Express the Answer in Simplest Form:
The probability can be expressed in its simplest form as:
[tex]\[ P(A \text{ and } B) = \frac{1}{4} \][/tex]
Therefore, the probability that both the first coin lands on heads and the second coin lands on tails is [tex]\(\frac{1}{4}\)[/tex] or [tex]\(0.25\)[/tex].
1. Identify the Individual Probabilities:
- Event [tex]\( A \)[/tex]: The first coin lands on heads.
The probability of a coin landing on heads is [tex]\( P(A) = 0.5 \)[/tex] or [tex]\( \frac{1}{2} \)[/tex].
- Event [tex]\( B \)[/tex]: The second coin lands on tails.
The probability of a coin landing on tails is [tex]\( P(B) = 0.5 \)[/tex] or [tex]\( \frac{1}{2} \)[/tex].
2. Use the Formula for Independent Events:
Since the events are independent, the probability of both events [tex]\(A\)[/tex] and [tex]\(B\)[/tex] occurring can be found using the formula:
[tex]\[ P(A \text{ and } B) = P(A) \cdot P(B) \][/tex]
3. Substitute the Known Probabilities:
[tex]\[ P(A \text{ and } B) = 0.5 \cdot 0.5 \][/tex]
4. Calculate the Result:
[tex]\[ P(A \text{ and } B) = 0.25 \][/tex]
5. Express the Answer in Simplest Form:
The probability can be expressed in its simplest form as:
[tex]\[ P(A \text{ and } B) = \frac{1}{4} \][/tex]
Therefore, the probability that both the first coin lands on heads and the second coin lands on tails is [tex]\(\frac{1}{4}\)[/tex] or [tex]\(0.25\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.