Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve the problem step by step:
1. Identify the total number of possible outcomes:
- Since we have two six-sided dice, and each die has 6 faces, the total number of possible outcomes when two dice are tossed is given by [tex]\(6 \times 6 = 36\)[/tex].
2. Determine the number of favorable outcomes for Event A:
- Event A is that the first die lands on 1, 2, 3, or 4. There are 4 favorable outcomes for Event A out of the 6 possible outcomes for the first die.
3. Determine the number of favorable outcomes for Event B:
- Event B is that the second die lands on 6. There is 1 favorable outcome for Event B out of the 6 possible outcomes for the second die.
4. Calculate the combined favorable outcomes when both events A and B occur together:
- To find the number of favorable outcomes where both Event A (first die lands on 1, 2, 3, or 4) and Event B (second die lands on 6) occur simultaneously, we multiply the number of favorable outcomes for Event A by the number of favorable outcomes for Event B. That gives us:
[tex]\[ \text{Number of favorable outcomes} = 4 \times 1 = 4 \][/tex]
5. Calculate the probability:
- The probability [tex]\(P(A \text{ and } B)\)[/tex] is calculated by dividing the number of favorable outcomes by the total number of possible outcomes. Thus:
[tex]\[ P(A \text{ and } B) = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} = \frac{4}{36} \][/tex]
- Simplify this fraction to its simplest form:
[tex]\[ \frac{4}{36} = \frac{1}{9} \][/tex]
Therefore, the probability that both Event A and Event B will occur is [tex]\( \frac{1}{9} \)[/tex].
1. Identify the total number of possible outcomes:
- Since we have two six-sided dice, and each die has 6 faces, the total number of possible outcomes when two dice are tossed is given by [tex]\(6 \times 6 = 36\)[/tex].
2. Determine the number of favorable outcomes for Event A:
- Event A is that the first die lands on 1, 2, 3, or 4. There are 4 favorable outcomes for Event A out of the 6 possible outcomes for the first die.
3. Determine the number of favorable outcomes for Event B:
- Event B is that the second die lands on 6. There is 1 favorable outcome for Event B out of the 6 possible outcomes for the second die.
4. Calculate the combined favorable outcomes when both events A and B occur together:
- To find the number of favorable outcomes where both Event A (first die lands on 1, 2, 3, or 4) and Event B (second die lands on 6) occur simultaneously, we multiply the number of favorable outcomes for Event A by the number of favorable outcomes for Event B. That gives us:
[tex]\[ \text{Number of favorable outcomes} = 4 \times 1 = 4 \][/tex]
5. Calculate the probability:
- The probability [tex]\(P(A \text{ and } B)\)[/tex] is calculated by dividing the number of favorable outcomes by the total number of possible outcomes. Thus:
[tex]\[ P(A \text{ and } B) = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} = \frac{4}{36} \][/tex]
- Simplify this fraction to its simplest form:
[tex]\[ \frac{4}{36} = \frac{1}{9} \][/tex]
Therefore, the probability that both Event A and Event B will occur is [tex]\( \frac{1}{9} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.