Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To prove that quadrilateral ABCD, with vertices A(0, 4), B(3, 8), C(8, 3), and D(5, -1), is a parallelogram but not a rectangle, we need to establish two conditions: that opposite sides are both parallel and equal in length (proving it's a parallelogram), and that adjacent sides are not perpendicular (proving it's not a rectangle).
### Step 1: Calculate the Slopes of the Sides
First, let's calculate the slopes of the sides to check if opposite sides are parallel.
Slope of AB:
Slope = [tex]\( \frac{(y_2 - y_1)}{(x_2 - x_1)} \)[/tex]
[tex]\[ \text{Slope}_{AB} = \frac{8 - 4}{3 - 0} = \frac{4}{3} = 1.3333 \][/tex]
Slope of CD:
[tex]\[ \text{Slope}_{CD} = \frac{3 - (-1)}{8 - 5} = \frac{4}{3} = 1.3333 \][/tex]
Slope of BC:
[tex]\[ \text{Slope}_{BC} = \frac{3 - 8}{8 - 3} = \frac{-5}{5} = -1 \][/tex]
Slope of DA:
[tex]\[ \text{Slope}_{DA} = \frac{4 - (-1)}{0 - 5} = \frac{5}{-5} = -1 \][/tex]
Since [tex]\( \text{Slope}_{AB} = \text{Slope}_{CD} = 1.3333 \)[/tex] and [tex]\( \text{Slope}_{BC} = \text{Slope}_{DA} = -1 \)[/tex], the opposite sides are parallel.
### Step 2: Calculate the Lengths of the Sides
Next, we'll calculate the lengths of the sides to check if opposite sides are equal.
Length of AB:
Distance = [tex]\( \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)[/tex]
[tex]\[ \text{Length}_{AB} = \sqrt{(3 - 0)^2 + (8 - 4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
Length of CD:
[tex]\[ \text{Length}_{CD} = \sqrt{(8 - 5)^2 + (3 - (-1))^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
Length of BC:
[tex]\[ \text{Length}_{BC} = \sqrt{(8 - 3)^2 + (3 - 8)^2} = \sqrt{25 + 25} = \sqrt{50} = 7.0711 \][/tex]
Length of DA:
[tex]\[ \text{Length}_{DA} = \sqrt{(0 - 5)^2 + (4 - (-1))^2} = \sqrt{25 + 25} = \sqrt{50} = 7.0711 \][/tex]
Since [tex]\( \text{Length}_{AB} = \text{Length}_{CD} = 5 \)[/tex] and [tex]\( \text{Length}_{BC} = \text{Length}_{DA} = 7.0711 \)[/tex], the opposite sides are equal in length.
### Step 3: Check for Perpendicular Slopes (Right Angles)
To determine if ABCD is a rectangle, we need to check if any adjacent sides are perpendicular, which would make their slopes the negative reciprocal of each other.
Product of Slopes for Adjacent Sides AB and BC:
[tex]\[ \text{Slope}_{AB} \times \text{Slope}_{BC} = 1.3333 \times -1 = -1.3333 \][/tex]
Product of Slopes for Adjacent Sides CD and DA:
[tex]\[ \text{Slope}_{CD} \times \text{Slope}_{DA} = 1.3333 \times -1 = -1.3333 \][/tex]
The products are not equal to -1, hence, AB is not perpendicular to BC and CD is not perpendicular to DA. As a result, the quadrilateral does not have right angles.
### Conclusion
Since opposite sides are both parallel and equal in length, quadrilateral ABCD is a parallelogram. However, because none of the adjacent sides form a right angle, ABCD is not a rectangle.
### Step 1: Calculate the Slopes of the Sides
First, let's calculate the slopes of the sides to check if opposite sides are parallel.
Slope of AB:
Slope = [tex]\( \frac{(y_2 - y_1)}{(x_2 - x_1)} \)[/tex]
[tex]\[ \text{Slope}_{AB} = \frac{8 - 4}{3 - 0} = \frac{4}{3} = 1.3333 \][/tex]
Slope of CD:
[tex]\[ \text{Slope}_{CD} = \frac{3 - (-1)}{8 - 5} = \frac{4}{3} = 1.3333 \][/tex]
Slope of BC:
[tex]\[ \text{Slope}_{BC} = \frac{3 - 8}{8 - 3} = \frac{-5}{5} = -1 \][/tex]
Slope of DA:
[tex]\[ \text{Slope}_{DA} = \frac{4 - (-1)}{0 - 5} = \frac{5}{-5} = -1 \][/tex]
Since [tex]\( \text{Slope}_{AB} = \text{Slope}_{CD} = 1.3333 \)[/tex] and [tex]\( \text{Slope}_{BC} = \text{Slope}_{DA} = -1 \)[/tex], the opposite sides are parallel.
### Step 2: Calculate the Lengths of the Sides
Next, we'll calculate the lengths of the sides to check if opposite sides are equal.
Length of AB:
Distance = [tex]\( \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)[/tex]
[tex]\[ \text{Length}_{AB} = \sqrt{(3 - 0)^2 + (8 - 4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
Length of CD:
[tex]\[ \text{Length}_{CD} = \sqrt{(8 - 5)^2 + (3 - (-1))^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
Length of BC:
[tex]\[ \text{Length}_{BC} = \sqrt{(8 - 3)^2 + (3 - 8)^2} = \sqrt{25 + 25} = \sqrt{50} = 7.0711 \][/tex]
Length of DA:
[tex]\[ \text{Length}_{DA} = \sqrt{(0 - 5)^2 + (4 - (-1))^2} = \sqrt{25 + 25} = \sqrt{50} = 7.0711 \][/tex]
Since [tex]\( \text{Length}_{AB} = \text{Length}_{CD} = 5 \)[/tex] and [tex]\( \text{Length}_{BC} = \text{Length}_{DA} = 7.0711 \)[/tex], the opposite sides are equal in length.
### Step 3: Check for Perpendicular Slopes (Right Angles)
To determine if ABCD is a rectangle, we need to check if any adjacent sides are perpendicular, which would make their slopes the negative reciprocal of each other.
Product of Slopes for Adjacent Sides AB and BC:
[tex]\[ \text{Slope}_{AB} \times \text{Slope}_{BC} = 1.3333 \times -1 = -1.3333 \][/tex]
Product of Slopes for Adjacent Sides CD and DA:
[tex]\[ \text{Slope}_{CD} \times \text{Slope}_{DA} = 1.3333 \times -1 = -1.3333 \][/tex]
The products are not equal to -1, hence, AB is not perpendicular to BC and CD is not perpendicular to DA. As a result, the quadrilateral does not have right angles.
### Conclusion
Since opposite sides are both parallel and equal in length, quadrilateral ABCD is a parallelogram. However, because none of the adjacent sides form a right angle, ABCD is not a rectangle.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.