Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's go through the process of solving the question step by step.
### Step 1: State the Hypotheses
The null and alternative hypotheses are:
[tex]\[ H_0: P_1 \leq P_2 \][/tex]
[tex]\[ H_1: P_1 > P_2 \][/tex]
where [tex]\( P_1 \)[/tex] is the proportion of people over 55 who dream in black and white, and [tex]\( P_2 \)[/tex] is the proportion of people under 25 who dream in black and white. This is a one-tailed test.
### Step 2: Calculate the Sample Proportions
First, we calculate the sample proportions for each group:
[tex]\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{69}{295} \approx 0.2339 \][/tex]
[tex]\[ \hat{p}_2 = \frac{11}{290} \approx 0.0379 \][/tex]
### Step 3: Pooled Proportion
Next, we calculate the pooled proportion, assuming the null hypothesis is true:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x2}{n_1 + n_2} = \frac{69 + 11}{295 + 290} \approx 0.1368 \][/tex]
### Step 4: Standard Error
We calculate the standard error for the difference between the two sample proportions:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.1368 \cdot (1 - 0.1368) \left( \frac{1}{295} + \frac{1}{290} \right)} \approx 0.0284 \][/tex]
### Step 5: Test Statistic
Calculate the z-score:
[tex]\[ z = \frac{\hat{p}_1 - \hat{p}_2}{SE} \][/tex]
[tex]\[ z = \frac{0.2339 - 0.0379}{0.0284} \approx 6.90 \][/tex]
### Step 6: P-value
Determine the p-value for the z-score in a one-tailed test:
[tex]\[ \text{P-value} \approx 1.32 \times 10^{-12} \][/tex]
### Step 7: Conclusion
Based on the p-value and the significance level of [tex]\( \alpha = 0.01 \)[/tex]:
Since [tex]\( \text{P-value} < \alpha \)[/tex], we reject the null hypothesis.
### Summary
Based on the hypothesis test, we reject the null hypothesis. There is significant evidence to support the claim that the proportion of people over 55 who dream in black and white is greater than the proportion for those under 25.
### Step 1: State the Hypotheses
The null and alternative hypotheses are:
[tex]\[ H_0: P_1 \leq P_2 \][/tex]
[tex]\[ H_1: P_1 > P_2 \][/tex]
where [tex]\( P_1 \)[/tex] is the proportion of people over 55 who dream in black and white, and [tex]\( P_2 \)[/tex] is the proportion of people under 25 who dream in black and white. This is a one-tailed test.
### Step 2: Calculate the Sample Proportions
First, we calculate the sample proportions for each group:
[tex]\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{69}{295} \approx 0.2339 \][/tex]
[tex]\[ \hat{p}_2 = \frac{11}{290} \approx 0.0379 \][/tex]
### Step 3: Pooled Proportion
Next, we calculate the pooled proportion, assuming the null hypothesis is true:
[tex]\[ \hat{p}_{\text{pool}} = \frac{x_1 + x2}{n_1 + n_2} = \frac{69 + 11}{295 + 290} \approx 0.1368 \][/tex]
### Step 4: Standard Error
We calculate the standard error for the difference between the two sample proportions:
[tex]\[ SE = \sqrt{\hat{p}_{\text{pool}} \cdot (1 - \hat{p}_{\text{pool}}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} \][/tex]
[tex]\[ SE \approx \sqrt{0.1368 \cdot (1 - 0.1368) \left( \frac{1}{295} + \frac{1}{290} \right)} \approx 0.0284 \][/tex]
### Step 5: Test Statistic
Calculate the z-score:
[tex]\[ z = \frac{\hat{p}_1 - \hat{p}_2}{SE} \][/tex]
[tex]\[ z = \frac{0.2339 - 0.0379}{0.0284} \approx 6.90 \][/tex]
### Step 6: P-value
Determine the p-value for the z-score in a one-tailed test:
[tex]\[ \text{P-value} \approx 1.32 \times 10^{-12} \][/tex]
### Step 7: Conclusion
Based on the p-value and the significance level of [tex]\( \alpha = 0.01 \)[/tex]:
Since [tex]\( \text{P-value} < \alpha \)[/tex], we reject the null hypothesis.
### Summary
Based on the hypothesis test, we reject the null hypothesis. There is significant evidence to support the claim that the proportion of people over 55 who dream in black and white is greater than the proportion for those under 25.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.