Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze the transformation described by John and identify the mistake he made.
1. Understanding the Transformation Rule:
The given transformation rule is [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex].
2. Applying the Transformation to the Pre-Image:
The pre-image coordinates provided are [tex]\( (4, 5) \)[/tex].
- For the [tex]\( x \)[/tex]-coordinate: [tex]\( x + 4 \)[/tex]
- Substituting [tex]\( x = 4 \)[/tex]:
[tex]\( x_{image} = 4 + 4 = 8 \)[/tex]
- For the [tex]\( y \)[/tex]-coordinate: [tex]\( y + 7 \)[/tex]
- Substituting [tex]\( y = 5 \)[/tex]:
[tex]\( y_{image} = 5 + 7 = 12 \)[/tex]
3. Resulting Image Coordinates:
After applying the transformation rule, the image coordinates should be [tex]\( (8, 12) \)[/tex].
4. Comparison with John's Claimed Result:
John claimed the image should be [tex]\( (0, -2) \)[/tex]. Let's see why this is incorrect.
- If we compare [tex]\( (8, 12) \)[/tex] with [tex]\( (0, -2) \)[/tex], we can see they are not the same.
- Thus, the transformation [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex] does not map [tex]\( (4, 5) \)[/tex] to [tex]\( (0, -2) \)[/tex].
5. Identifying John's Error:
- The error lies in John's misunderstanding of the transformation rule.
- He likely miscalculated or assumed wrong values when applying [tex]\( (x + 4, y + 7) \)[/tex].
### Summary:
John's mistake was in the application of the transformation rule. When correctly applying [tex]\( (4, 5) \)[/tex] with the given rule [tex]\( (x + 4, y + 7) \)[/tex], we derive the image coordinates as [tex]\( (8, 12) \)[/tex], not [tex]\( (0, -2) \)[/tex].
1. Understanding the Transformation Rule:
The given transformation rule is [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex].
2. Applying the Transformation to the Pre-Image:
The pre-image coordinates provided are [tex]\( (4, 5) \)[/tex].
- For the [tex]\( x \)[/tex]-coordinate: [tex]\( x + 4 \)[/tex]
- Substituting [tex]\( x = 4 \)[/tex]:
[tex]\( x_{image} = 4 + 4 = 8 \)[/tex]
- For the [tex]\( y \)[/tex]-coordinate: [tex]\( y + 7 \)[/tex]
- Substituting [tex]\( y = 5 \)[/tex]:
[tex]\( y_{image} = 5 + 7 = 12 \)[/tex]
3. Resulting Image Coordinates:
After applying the transformation rule, the image coordinates should be [tex]\( (8, 12) \)[/tex].
4. Comparison with John's Claimed Result:
John claimed the image should be [tex]\( (0, -2) \)[/tex]. Let's see why this is incorrect.
- If we compare [tex]\( (8, 12) \)[/tex] with [tex]\( (0, -2) \)[/tex], we can see they are not the same.
- Thus, the transformation [tex]\( (x, y) \rightarrow (x + 4, y + 7) \)[/tex] does not map [tex]\( (4, 5) \)[/tex] to [tex]\( (0, -2) \)[/tex].
5. Identifying John's Error:
- The error lies in John's misunderstanding of the transformation rule.
- He likely miscalculated or assumed wrong values when applying [tex]\( (x + 4, y + 7) \)[/tex].
### Summary:
John's mistake was in the application of the transformation rule. When correctly applying [tex]\( (4, 5) \)[/tex] with the given rule [tex]\( (x + 4, y + 7) \)[/tex], we derive the image coordinates as [tex]\( (8, 12) \)[/tex], not [tex]\( (0, -2) \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.