Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which power of 10 would have a value of [tex]\(\frac{1}{1,000,000}\)[/tex], we can examine the pattern in the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Power of 10} & \text{Value} \\ \hline 10^1 & 10 \\ \hline 10^0 & 1 \\ \hline 10^{-1} & \frac{1}{10} \\ \hline 10^{-2} & \frac{1}{100} \\ \hline 10^{-3} & \frac{1}{1,000} \\ \hline 10^{-4} & \frac{1}{10,000} \\ \hline \end{array} \][/tex]
We can observe that each negative power of 10 corresponds to the reciprocal of a positive power of 10:
- [tex]\(10^{-1} = \frac{1}{10}\)[/tex]
- [tex]\(10^{-2} = \frac{1}{100}\)[/tex]
- [tex]\(10^{-3} = \frac{1}{1,000}\)[/tex]
- [tex]\(10^{-4} = \frac{1}{10,000}\)[/tex]
From this pattern, we can see that as the negative exponent increases by 1, the value becomes the reciprocal of an additional factor of 10.
To find the power of 10 corresponding to [tex]\(\frac{1}{1,000,000}\)[/tex]:
[tex]\[ 1,000,000 = 10^6 \][/tex]
So the reciprocal of [tex]\(10^6\)[/tex] would be:
[tex]\[ \frac{1}{10^6} = 10^{-6} \][/tex]
Therefore, the power of 10 that corresponds to the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(\boxed{10^{-6}}\)[/tex].
Thus, [tex]\(\frac{1}{1,000,000}\)[/tex] corresponds to [tex]\(10^{-6}\)[/tex], and the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(1 \times 10^{-6}\)[/tex] or [tex]\(1e-06\)[/tex].
[tex]\[ \begin{array}{|c|c|} \hline \text{Power of 10} & \text{Value} \\ \hline 10^1 & 10 \\ \hline 10^0 & 1 \\ \hline 10^{-1} & \frac{1}{10} \\ \hline 10^{-2} & \frac{1}{100} \\ \hline 10^{-3} & \frac{1}{1,000} \\ \hline 10^{-4} & \frac{1}{10,000} \\ \hline \end{array} \][/tex]
We can observe that each negative power of 10 corresponds to the reciprocal of a positive power of 10:
- [tex]\(10^{-1} = \frac{1}{10}\)[/tex]
- [tex]\(10^{-2} = \frac{1}{100}\)[/tex]
- [tex]\(10^{-3} = \frac{1}{1,000}\)[/tex]
- [tex]\(10^{-4} = \frac{1}{10,000}\)[/tex]
From this pattern, we can see that as the negative exponent increases by 1, the value becomes the reciprocal of an additional factor of 10.
To find the power of 10 corresponding to [tex]\(\frac{1}{1,000,000}\)[/tex]:
[tex]\[ 1,000,000 = 10^6 \][/tex]
So the reciprocal of [tex]\(10^6\)[/tex] would be:
[tex]\[ \frac{1}{10^6} = 10^{-6} \][/tex]
Therefore, the power of 10 that corresponds to the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(\boxed{10^{-6}}\)[/tex].
Thus, [tex]\(\frac{1}{1,000,000}\)[/tex] corresponds to [tex]\(10^{-6}\)[/tex], and the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(1 \times 10^{-6}\)[/tex] or [tex]\(1e-06\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.