Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which power of 10 would have a value of [tex]\(\frac{1}{1,000,000}\)[/tex], we can examine the pattern in the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Power of 10} & \text{Value} \\ \hline 10^1 & 10 \\ \hline 10^0 & 1 \\ \hline 10^{-1} & \frac{1}{10} \\ \hline 10^{-2} & \frac{1}{100} \\ \hline 10^{-3} & \frac{1}{1,000} \\ \hline 10^{-4} & \frac{1}{10,000} \\ \hline \end{array} \][/tex]
We can observe that each negative power of 10 corresponds to the reciprocal of a positive power of 10:
- [tex]\(10^{-1} = \frac{1}{10}\)[/tex]
- [tex]\(10^{-2} = \frac{1}{100}\)[/tex]
- [tex]\(10^{-3} = \frac{1}{1,000}\)[/tex]
- [tex]\(10^{-4} = \frac{1}{10,000}\)[/tex]
From this pattern, we can see that as the negative exponent increases by 1, the value becomes the reciprocal of an additional factor of 10.
To find the power of 10 corresponding to [tex]\(\frac{1}{1,000,000}\)[/tex]:
[tex]\[ 1,000,000 = 10^6 \][/tex]
So the reciprocal of [tex]\(10^6\)[/tex] would be:
[tex]\[ \frac{1}{10^6} = 10^{-6} \][/tex]
Therefore, the power of 10 that corresponds to the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(\boxed{10^{-6}}\)[/tex].
Thus, [tex]\(\frac{1}{1,000,000}\)[/tex] corresponds to [tex]\(10^{-6}\)[/tex], and the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(1 \times 10^{-6}\)[/tex] or [tex]\(1e-06\)[/tex].
[tex]\[ \begin{array}{|c|c|} \hline \text{Power of 10} & \text{Value} \\ \hline 10^1 & 10 \\ \hline 10^0 & 1 \\ \hline 10^{-1} & \frac{1}{10} \\ \hline 10^{-2} & \frac{1}{100} \\ \hline 10^{-3} & \frac{1}{1,000} \\ \hline 10^{-4} & \frac{1}{10,000} \\ \hline \end{array} \][/tex]
We can observe that each negative power of 10 corresponds to the reciprocal of a positive power of 10:
- [tex]\(10^{-1} = \frac{1}{10}\)[/tex]
- [tex]\(10^{-2} = \frac{1}{100}\)[/tex]
- [tex]\(10^{-3} = \frac{1}{1,000}\)[/tex]
- [tex]\(10^{-4} = \frac{1}{10,000}\)[/tex]
From this pattern, we can see that as the negative exponent increases by 1, the value becomes the reciprocal of an additional factor of 10.
To find the power of 10 corresponding to [tex]\(\frac{1}{1,000,000}\)[/tex]:
[tex]\[ 1,000,000 = 10^6 \][/tex]
So the reciprocal of [tex]\(10^6\)[/tex] would be:
[tex]\[ \frac{1}{10^6} = 10^{-6} \][/tex]
Therefore, the power of 10 that corresponds to the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(\boxed{10^{-6}}\)[/tex].
Thus, [tex]\(\frac{1}{1,000,000}\)[/tex] corresponds to [tex]\(10^{-6}\)[/tex], and the value of [tex]\(\frac{1}{1,000,000}\)[/tex] is [tex]\(1 \times 10^{-6}\)[/tex] or [tex]\(1e-06\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.