Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Which is the simplified form of [tex][tex]$x^{-12}$[/tex][/tex]?

A. [tex][tex]$x^{12}$[/tex][/tex]
B. [tex][tex]$-x^{12}$[/tex][/tex]
C. [tex][tex]$\frac{1}{x^{12}}$[/tex][/tex]
D. [tex][tex]$-\frac{1}{x^{12}}$[/tex][/tex]


Sagot :

Certainly! Let's simplify the expression [tex]\( x^{-12} \)[/tex].

1. Understand Negative Exponents:
The negative exponent rule states that [tex]\( x^{-a} = \frac{1}{x^a} \)[/tex]. This means any term with a negative exponent can be rewritten as a reciprocal with a positive exponent.

2. Apply the Rule:
Given the expression [tex]\( x^{-12} \)[/tex], we can apply the negative exponent rule:
[tex]\[ x^{-12} = \frac{1}{x^{12}} \][/tex]

3. Review the Options:
We have the following options:
- [tex]\( x^{12} \)[/tex]
- [tex]\(-x^{12} \)[/tex]
- [tex]\( \frac{1}{x^{12}} \)[/tex]
- [tex]\(-\frac{1}{x^{12}} \)[/tex]

From our simplification [tex]\( x^{-12} = \frac{1}{x^{12}} \)[/tex].

4. Select the Correct Answer:
The correct simplified form of [tex]\( x^{-12} \)[/tex] is [tex]\(\frac{1}{x^{12}}\)[/tex].

Therefore, the simplified form is [tex]\(\frac{1}{x^{12}}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.