Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To convert the repeating decimal [tex]\( 1.\overline{6} \)[/tex] into a simplified fraction, follow these steps:
1. Let [tex]\( x = 1.\overline{6} \)[/tex]. This means [tex]\( x \)[/tex] is equal to 1.666666..., where the digit 6 repeats indefinitely.
2. Multiply both sides of this equation by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 16.\overline{6} \][/tex]
This means [tex]\( 10x \)[/tex] is equal to 16.666666... with the digit 6 repeating indefinitely.
3. Subtract the original equation [tex]\( x = 1.\overline{6} \)[/tex] from this new equation:
[tex]\[ 10x - x = 16.\overline{6} - 1.\overline{6} \][/tex]
On the left side, this simplifies to:
[tex]\[ 9x \][/tex]
On the right side, the repeating decimals cancel out, leaving:
[tex]\[ 16 - 1 = 15 \][/tex]
So, we have:
[tex]\[ 9x = 15 \][/tex]
4. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{15}{9} \][/tex]
5. Simplify the fraction [tex]\(\frac{15}{9}\)[/tex] by finding the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 15 and 9 is 3.
Divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{15 \div 3}{9 \div 3} = \frac{5}{3} \][/tex]
Thus, the simplified fraction of the repeating decimal [tex]\( 1.\overline{6} \)[/tex] is:
[tex]\[ \boxed{\frac{5}{3}} \][/tex]
1. Let [tex]\( x = 1.\overline{6} \)[/tex]. This means [tex]\( x \)[/tex] is equal to 1.666666..., where the digit 6 repeats indefinitely.
2. Multiply both sides of this equation by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 16.\overline{6} \][/tex]
This means [tex]\( 10x \)[/tex] is equal to 16.666666... with the digit 6 repeating indefinitely.
3. Subtract the original equation [tex]\( x = 1.\overline{6} \)[/tex] from this new equation:
[tex]\[ 10x - x = 16.\overline{6} - 1.\overline{6} \][/tex]
On the left side, this simplifies to:
[tex]\[ 9x \][/tex]
On the right side, the repeating decimals cancel out, leaving:
[tex]\[ 16 - 1 = 15 \][/tex]
So, we have:
[tex]\[ 9x = 15 \][/tex]
4. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{15}{9} \][/tex]
5. Simplify the fraction [tex]\(\frac{15}{9}\)[/tex] by finding the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 15 and 9 is 3.
Divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{15 \div 3}{9 \div 3} = \frac{5}{3} \][/tex]
Thus, the simplified fraction of the repeating decimal [tex]\( 1.\overline{6} \)[/tex] is:
[tex]\[ \boxed{\frac{5}{3}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.