Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To convert the repeating decimal [tex]\( 1.\overline{6} \)[/tex] into a simplified fraction, follow these steps:
1. Let [tex]\( x = 1.\overline{6} \)[/tex]. This means [tex]\( x \)[/tex] is equal to 1.666666..., where the digit 6 repeats indefinitely.
2. Multiply both sides of this equation by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 16.\overline{6} \][/tex]
This means [tex]\( 10x \)[/tex] is equal to 16.666666... with the digit 6 repeating indefinitely.
3. Subtract the original equation [tex]\( x = 1.\overline{6} \)[/tex] from this new equation:
[tex]\[ 10x - x = 16.\overline{6} - 1.\overline{6} \][/tex]
On the left side, this simplifies to:
[tex]\[ 9x \][/tex]
On the right side, the repeating decimals cancel out, leaving:
[tex]\[ 16 - 1 = 15 \][/tex]
So, we have:
[tex]\[ 9x = 15 \][/tex]
4. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{15}{9} \][/tex]
5. Simplify the fraction [tex]\(\frac{15}{9}\)[/tex] by finding the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 15 and 9 is 3.
Divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{15 \div 3}{9 \div 3} = \frac{5}{3} \][/tex]
Thus, the simplified fraction of the repeating decimal [tex]\( 1.\overline{6} \)[/tex] is:
[tex]\[ \boxed{\frac{5}{3}} \][/tex]
1. Let [tex]\( x = 1.\overline{6} \)[/tex]. This means [tex]\( x \)[/tex] is equal to 1.666666..., where the digit 6 repeats indefinitely.
2. Multiply both sides of this equation by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 16.\overline{6} \][/tex]
This means [tex]\( 10x \)[/tex] is equal to 16.666666... with the digit 6 repeating indefinitely.
3. Subtract the original equation [tex]\( x = 1.\overline{6} \)[/tex] from this new equation:
[tex]\[ 10x - x = 16.\overline{6} - 1.\overline{6} \][/tex]
On the left side, this simplifies to:
[tex]\[ 9x \][/tex]
On the right side, the repeating decimals cancel out, leaving:
[tex]\[ 16 - 1 = 15 \][/tex]
So, we have:
[tex]\[ 9x = 15 \][/tex]
4. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{15}{9} \][/tex]
5. Simplify the fraction [tex]\(\frac{15}{9}\)[/tex] by finding the greatest common divisor (GCD) of the numerator and the denominator. The GCD of 15 and 9 is 3.
Divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{15 \div 3}{9 \div 3} = \frac{5}{3} \][/tex]
Thus, the simplified fraction of the repeating decimal [tex]\( 1.\overline{6} \)[/tex] is:
[tex]\[ \boxed{\frac{5}{3}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.