Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To rewrite the repeating decimal [tex]\(2.1\overline{6}\)[/tex] as a simplified fraction, we'll go through the following steps:
1. Express the repeating decimal as a variable.
Let's call the repeating decimal [tex]\( x \)[/tex].
[tex]\[ x = 2.1\overline{6} \][/tex]
2. Eliminate the repeating part by shifting the decimal point.
Since the repeating part is a single digit "6", we multiply [tex]\( x \)[/tex] by 10 to move one decimal place to the right:
[tex]\[ 10x = 21.6\overline{6} \][/tex]
3. Subtract the original equation from the new equation.
Subtract [tex]\( x \)[/tex] from [tex]\( 10x \)[/tex] to eliminate the repeating part:
[tex]\[ 10x - x = 21.6\overline{6} - 2.1\overline{6} \][/tex]
Simplifying this:
[tex]\[ 9x = 21.6 - 2.1 \][/tex]
[tex]\[ 9x = 19.5 \][/tex]
4. Solve for [tex]\( x \)[/tex].
Divide both sides by 9:
[tex]\[ x = \frac{19.5}{9} \][/tex]
5. Simplify the fraction.
To simplify [tex]\(\frac{19.5}{9}\)[/tex], first express the numerator as an integer:
[tex]\[ 19.5 = \frac{195}{10} \][/tex]
So,
[tex]\[ x = \frac{\frac{195}{10}}{9} = \frac{195}{90} \][/tex]
6. Find the greatest common divisor (GCD) of 195 and 90.
To simplify [tex]\(\frac{195}{90}\)[/tex], we need to find the GCD. The prime factorizations are:
- 195: [tex]\(195 = 3 \times 5 \times 13\)[/tex]
- 90: [tex]\(90 = 2 \times 3 \times 3 \times 5\)[/tex]
The common factors are [tex]\(3\)[/tex] and [tex]\(5\)[/tex], so:
[tex]\[ \text{GCD}(195, 90) = 3 \times 5 = 15 \][/tex]
7. Divide both the numerator and denominator by their GCD:
[tex]\[ \frac{195 \div 15}{90 \div 15} = \frac{13}{6} \][/tex]
So, the repeating decimal [tex]\( 2.1\overline{6} \)[/tex] can be expressed as the simplified fraction:
[tex]\[ 2.1\overline{6} = \frac{13}{6} \][/tex]
1. Express the repeating decimal as a variable.
Let's call the repeating decimal [tex]\( x \)[/tex].
[tex]\[ x = 2.1\overline{6} \][/tex]
2. Eliminate the repeating part by shifting the decimal point.
Since the repeating part is a single digit "6", we multiply [tex]\( x \)[/tex] by 10 to move one decimal place to the right:
[tex]\[ 10x = 21.6\overline{6} \][/tex]
3. Subtract the original equation from the new equation.
Subtract [tex]\( x \)[/tex] from [tex]\( 10x \)[/tex] to eliminate the repeating part:
[tex]\[ 10x - x = 21.6\overline{6} - 2.1\overline{6} \][/tex]
Simplifying this:
[tex]\[ 9x = 21.6 - 2.1 \][/tex]
[tex]\[ 9x = 19.5 \][/tex]
4. Solve for [tex]\( x \)[/tex].
Divide both sides by 9:
[tex]\[ x = \frac{19.5}{9} \][/tex]
5. Simplify the fraction.
To simplify [tex]\(\frac{19.5}{9}\)[/tex], first express the numerator as an integer:
[tex]\[ 19.5 = \frac{195}{10} \][/tex]
So,
[tex]\[ x = \frac{\frac{195}{10}}{9} = \frac{195}{90} \][/tex]
6. Find the greatest common divisor (GCD) of 195 and 90.
To simplify [tex]\(\frac{195}{90}\)[/tex], we need to find the GCD. The prime factorizations are:
- 195: [tex]\(195 = 3 \times 5 \times 13\)[/tex]
- 90: [tex]\(90 = 2 \times 3 \times 3 \times 5\)[/tex]
The common factors are [tex]\(3\)[/tex] and [tex]\(5\)[/tex], so:
[tex]\[ \text{GCD}(195, 90) = 3 \times 5 = 15 \][/tex]
7. Divide both the numerator and denominator by their GCD:
[tex]\[ \frac{195 \div 15}{90 \div 15} = \frac{13}{6} \][/tex]
So, the repeating decimal [tex]\( 2.1\overline{6} \)[/tex] can be expressed as the simplified fraction:
[tex]\[ 2.1\overline{6} = \frac{13}{6} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.