Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which ordered pairs could be points on a line parallel to the line that contains the points [tex]\((3,4)\)[/tex] and [tex]\((-2,2)\)[/tex], we need to find the slope of the line formed by these two points, and then check for other pairs of points that have the same slope.
### Step 1: Find the Slope of the Line through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in [tex]\((x_1, y_1) = (3, 4)\)[/tex] and [tex]\((x_2, y_2) = (-2, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = 0.4 \][/tex]
So, the slope of the line through the points [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] is [tex]\(0.4\)[/tex].
### Step 2: Check Each Pair to See if They Have the Same Slope
### Pair 1: [tex]\((-2, -5)\)[/tex] and [tex]\((-7, -3)\)[/tex]
[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{-3 + 5}{-7 + 2} = \frac{2}{-5} = -0.4 \][/tex]
This pair does not have the same slope.
### Pair 2: [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-1 - 1}{-6 + 1} = \frac{-2}{-5} = 0.4 \][/tex]
This pair has the same slope.
### Pair 3: [tex]\((0, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]
[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} = 2.5 \][/tex]
This pair does not have the same slope.
### Pair 4: [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} = 0.4 \][/tex]
This pair has the same slope.
### Pair 5: [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} = 0.4 \][/tex]
This pair has the same slope.
### Conclusion
The pairs that could be points on a line parallel to the line containing the points [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] are:
[tex]\[ (-1, 1) \text{ and } (-6, -1) \][/tex]
[tex]\[ (1, 0) \text{ and } (6, 2) \][/tex]
[tex]\[ (3, 0) \text{ and } (8, 2) \][/tex]
So, these are the ordered pairs that have lines with the same slope of [tex]\(0.4\)[/tex].
### Step 1: Find the Slope of the Line through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in [tex]\((x_1, y_1) = (3, 4)\)[/tex] and [tex]\((x_2, y_2) = (-2, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = 0.4 \][/tex]
So, the slope of the line through the points [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] is [tex]\(0.4\)[/tex].
### Step 2: Check Each Pair to See if They Have the Same Slope
### Pair 1: [tex]\((-2, -5)\)[/tex] and [tex]\((-7, -3)\)[/tex]
[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{-3 + 5}{-7 + 2} = \frac{2}{-5} = -0.4 \][/tex]
This pair does not have the same slope.
### Pair 2: [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-1 - 1}{-6 + 1} = \frac{-2}{-5} = 0.4 \][/tex]
This pair has the same slope.
### Pair 3: [tex]\((0, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]
[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} = 2.5 \][/tex]
This pair does not have the same slope.
### Pair 4: [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} = 0.4 \][/tex]
This pair has the same slope.
### Pair 5: [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} = 0.4 \][/tex]
This pair has the same slope.
### Conclusion
The pairs that could be points on a line parallel to the line containing the points [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] are:
[tex]\[ (-1, 1) \text{ and } (-6, -1) \][/tex]
[tex]\[ (1, 0) \text{ and } (6, 2) \][/tex]
[tex]\[ (3, 0) \text{ and } (8, 2) \][/tex]
So, these are the ordered pairs that have lines with the same slope of [tex]\(0.4\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.