Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the solution to the given system of equations, we need to find the point at which the two lines intersect. Here are the equations:
1. [tex]\( y = 3x + 9 \)[/tex]
2. [tex]\( 6x + 2y = 6 \)[/tex]
### Step-by-Step Solution
#### Step 1: Convert the Second Equation to Slope-Intercept Form
The second equation is [tex]\( 6x + 2y = 6 \)[/tex]. To express this equation in the slope-intercept form [tex]\( y = mx + b \)[/tex], follow these steps:
1. Subtract [tex]\( 6x \)[/tex] from both sides:
[tex]\[ 2y = 6 - 6x \][/tex]
2. Divide every term by 2:
[tex]\[ y = -3x + 3 \][/tex]
Now, we have the two equations in slope-intercept form:
- [tex]\( y = 3x + 9 \)[/tex]
- [tex]\( y = -3x + 3 \)[/tex]
#### Step 2: Find the Intersection Point
To find the point of intersection, set the right-hand sides of the equations equal to each other:
[tex]\[ 3x + 9 = -3x + 3 \][/tex]
Solve for [tex]\( x \)[/tex]:
1. Add [tex]\( 3x \)[/tex] to both sides:
[tex]\[ 6x + 9 = 3 \][/tex]
2. Subtract 9 from both sides:
[tex]\[ 6x = -6 \][/tex]
3. Divide by 6:
[tex]\[ x = -1 \][/tex]
With [tex]\( x = -1 \)[/tex], substitute this value into one of the original equations to find [tex]\( y \)[/tex]. Using [tex]\( y = 3x + 9 \)[/tex]:
[tex]\[ y = 3(-1) + 9 = -3 + 9 = 6 \][/tex]
Therefore, the solution to the system is [tex]\( (-1, 6) \)[/tex].
### Conclusion
The system of equations has one unique solution: [tex]\( (-1, 6) \)[/tex].
The graphical representations of these equations will intersect at this point. Consequently, the correct answer is:
There is one unique solution [tex]\((-1, 6)\)[/tex].
1. [tex]\( y = 3x + 9 \)[/tex]
2. [tex]\( 6x + 2y = 6 \)[/tex]
### Step-by-Step Solution
#### Step 1: Convert the Second Equation to Slope-Intercept Form
The second equation is [tex]\( 6x + 2y = 6 \)[/tex]. To express this equation in the slope-intercept form [tex]\( y = mx + b \)[/tex], follow these steps:
1. Subtract [tex]\( 6x \)[/tex] from both sides:
[tex]\[ 2y = 6 - 6x \][/tex]
2. Divide every term by 2:
[tex]\[ y = -3x + 3 \][/tex]
Now, we have the two equations in slope-intercept form:
- [tex]\( y = 3x + 9 \)[/tex]
- [tex]\( y = -3x + 3 \)[/tex]
#### Step 2: Find the Intersection Point
To find the point of intersection, set the right-hand sides of the equations equal to each other:
[tex]\[ 3x + 9 = -3x + 3 \][/tex]
Solve for [tex]\( x \)[/tex]:
1. Add [tex]\( 3x \)[/tex] to both sides:
[tex]\[ 6x + 9 = 3 \][/tex]
2. Subtract 9 from both sides:
[tex]\[ 6x = -6 \][/tex]
3. Divide by 6:
[tex]\[ x = -1 \][/tex]
With [tex]\( x = -1 \)[/tex], substitute this value into one of the original equations to find [tex]\( y \)[/tex]. Using [tex]\( y = 3x + 9 \)[/tex]:
[tex]\[ y = 3(-1) + 9 = -3 + 9 = 6 \][/tex]
Therefore, the solution to the system is [tex]\( (-1, 6) \)[/tex].
### Conclusion
The system of equations has one unique solution: [tex]\( (-1, 6) \)[/tex].
The graphical representations of these equations will intersect at this point. Consequently, the correct answer is:
There is one unique solution [tex]\((-1, 6)\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.