Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the slope of the line given by the equation [tex]\(x + 2y = 16\)[/tex], we need to express this equation in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
Here are the steps to convert the given equation [tex]\(x + 2y = 16\)[/tex] into the slope-intercept form:
1. Start with the given equation:
[tex]\[ x + 2y = 16 \][/tex]
2. Isolate the term involving [tex]\(y\)[/tex] on one side of the equation. To do this, you need to subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2y = 16 - x \][/tex]
3. Now, solve for [tex]\(y\)[/tex] by dividing every term by 2:
[tex]\[ y = \frac{16 - x}{2} \][/tex]
4. Simplify the right-hand side:
[tex]\[ y = \frac{16}{2} - \frac{x}{2} \][/tex]
[tex]\[ y = 8 - 0.5x \][/tex]
Now, the equation is in the slope-intercept form [tex]\(y = -0.5x + 8\)[/tex].
From this form, we can identify the slope [tex]\(m\)[/tex]:
[tex]\[ m = -0.5 \][/tex]
So, the slope of the line represented by the equation [tex]\(x + 2y = 16\)[/tex] is [tex]\(\boxed{-0.5}\)[/tex].
Here are the steps to convert the given equation [tex]\(x + 2y = 16\)[/tex] into the slope-intercept form:
1. Start with the given equation:
[tex]\[ x + 2y = 16 \][/tex]
2. Isolate the term involving [tex]\(y\)[/tex] on one side of the equation. To do this, you need to subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2y = 16 - x \][/tex]
3. Now, solve for [tex]\(y\)[/tex] by dividing every term by 2:
[tex]\[ y = \frac{16 - x}{2} \][/tex]
4. Simplify the right-hand side:
[tex]\[ y = \frac{16}{2} - \frac{x}{2} \][/tex]
[tex]\[ y = 8 - 0.5x \][/tex]
Now, the equation is in the slope-intercept form [tex]\(y = -0.5x + 8\)[/tex].
From this form, we can identify the slope [tex]\(m\)[/tex]:
[tex]\[ m = -0.5 \][/tex]
So, the slope of the line represented by the equation [tex]\(x + 2y = 16\)[/tex] is [tex]\(\boxed{-0.5}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.