Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the table represents a linear or nonlinear function, we need to examine the rate of change of the function. Linear functions have a constant rate of change, meaning that the difference between consecutive [tex]$y$[/tex]-values divided by the difference between consecutive [tex]$x$[/tex]-values (slope) is always the same.
Let's analyze the provided table:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline y & 4 & 2 & 0 & 2 & 4 \\ \hline \end{tabular} \][/tex]
### Step-by-Step Solution
1. Calculate the differences in the [tex]$x$[/tex]-values:
[tex]\[ \Delta x = x_{i+1} - x_i \][/tex]
[tex]\[ \Delta x = [-1 - (-2), 0 - (-1), 1 - 0, 2 - 1] \][/tex]
[tex]\[ \Delta x = [1, 1, 1, 1] \][/tex]
2. Calculate the differences in the [tex]$y$[/tex]-values:
[tex]\[ \Delta y = y_{i+1} - y_i \][/tex]
[tex]\[ \Delta y = [2 - 4, 0 - 2, 2 - 0, 4 - 2] \][/tex]
[tex]\[ \Delta y = [-2, -2, 2, 2] \][/tex]
3. Calculate the rate of change for each pair of points:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} \][/tex]
[tex]\[ \text{Rate of change} = \left[\frac{-2}{1}, \frac{-2}{1}, \frac{2}{1}, \frac{2}{1}\right] \][/tex]
[tex]\[ \text{Rate of change} = [-2.0, -2.0, 2.0, 2.0] \][/tex]
4. Check if the rate of change is constant:
[tex]\[ \text{Rate of change} = [-2.0, -2.0, 2.0, 2.0] \][/tex]
The rates of change are not all the same. Some are -2.0 and others are 2.0.
### Conclusion
Since the rate of change of the output values ([tex]\(y\)[/tex]) is not constant, the table represents a nonlinear function.
Therefore, the correct statement is:
"The table represents a nonlinear function because there is not a constant rate of change in the output values."
Let's analyze the provided table:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline y & 4 & 2 & 0 & 2 & 4 \\ \hline \end{tabular} \][/tex]
### Step-by-Step Solution
1. Calculate the differences in the [tex]$x$[/tex]-values:
[tex]\[ \Delta x = x_{i+1} - x_i \][/tex]
[tex]\[ \Delta x = [-1 - (-2), 0 - (-1), 1 - 0, 2 - 1] \][/tex]
[tex]\[ \Delta x = [1, 1, 1, 1] \][/tex]
2. Calculate the differences in the [tex]$y$[/tex]-values:
[tex]\[ \Delta y = y_{i+1} - y_i \][/tex]
[tex]\[ \Delta y = [2 - 4, 0 - 2, 2 - 0, 4 - 2] \][/tex]
[tex]\[ \Delta y = [-2, -2, 2, 2] \][/tex]
3. Calculate the rate of change for each pair of points:
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} \][/tex]
[tex]\[ \text{Rate of change} = \left[\frac{-2}{1}, \frac{-2}{1}, \frac{2}{1}, \frac{2}{1}\right] \][/tex]
[tex]\[ \text{Rate of change} = [-2.0, -2.0, 2.0, 2.0] \][/tex]
4. Check if the rate of change is constant:
[tex]\[ \text{Rate of change} = [-2.0, -2.0, 2.0, 2.0] \][/tex]
The rates of change are not all the same. Some are -2.0 and others are 2.0.
### Conclusion
Since the rate of change of the output values ([tex]\(y\)[/tex]) is not constant, the table represents a nonlinear function.
Therefore, the correct statement is:
"The table represents a nonlinear function because there is not a constant rate of change in the output values."
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.