Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the inverse of the given function [tex]\( f(x) = \frac{7x - 4}{2} \)[/tex], we will need to follow specific steps in algebra to solve for the inverse function.
1. Set [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = \frac{7x - 4}{2} \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
Start by isolating [tex]\( x \)[/tex] in the given equation:
[tex]\[ 2y = 7x - 4 \][/tex]
Next, solve for [tex]\( 7x \)[/tex]:
[tex]\[ 7x = 2y + 4 \][/tex]
Finally, divide both sides by 7 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{2y + 4}{7} \][/tex]
3. Express the inverse function [tex]\( f^{-1}(x) \)[/tex]:
By replacing [tex]\( y \)[/tex] with [tex]\( x \)[/tex] in the final equation, we get:
[tex]\[ f^{-1}(x) = \frac{2x + 4}{7} \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] can be written as:
[tex]\[ f^{-1}(x) = \frac{2x + 4}{7} \][/tex]
So, [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \frac{2x + 4}{7} \)[/tex], where [tex]\( 2 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 7 \)[/tex] are the coefficients of [tex]\( x \)[/tex], the constant term, and the denominator, respectively.
1. Set [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = \frac{7x - 4}{2} \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
Start by isolating [tex]\( x \)[/tex] in the given equation:
[tex]\[ 2y = 7x - 4 \][/tex]
Next, solve for [tex]\( 7x \)[/tex]:
[tex]\[ 7x = 2y + 4 \][/tex]
Finally, divide both sides by 7 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{2y + 4}{7} \][/tex]
3. Express the inverse function [tex]\( f^{-1}(x) \)[/tex]:
By replacing [tex]\( y \)[/tex] with [tex]\( x \)[/tex] in the final equation, we get:
[tex]\[ f^{-1}(x) = \frac{2x + 4}{7} \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] can be written as:
[tex]\[ f^{-1}(x) = \frac{2x + 4}{7} \][/tex]
So, [tex]\( f^{-1}(x) \)[/tex] is [tex]\( \frac{2x + 4}{7} \)[/tex], where [tex]\( 2 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 7 \)[/tex] are the coefficients of [tex]\( x \)[/tex], the constant term, and the denominator, respectively.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.