At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the domain and range of the function [tex]\( y = (x+3)^2 - 5 \)[/tex], let's analyze the function step-by-step.
### Domain:
The domain of a function refers to the set of all possible input values (x-values) that the function can accept without any restrictions. Here, [tex]\( y = (x+3)^2 - 5 \)[/tex] is a quadratic function, which is defined for all real numbers.
So, the domain of [tex]\( y = (x+3)^2 - 5 \)[/tex] is:
[tex]\[ (-\infty, \infty) \][/tex]
### Range:
The range of a function refers to the set of all possible output values (y-values) that the function can produce.
To find the range of [tex]\( y = (x+3)^2 - 5 \)[/tex]:
1. Note that [tex]\((x+3)^2\)[/tex] is a quadratic function that opens upwards, meaning it has a minimum value at its vertex.
2. The vertex of [tex]\( (x+3)^2 \)[/tex] is at [tex]\( x = -3 \)[/tex], and the value at the vertex is 0; thus, when [tex]\( x = -3 \)[/tex], [tex]\( (x+3)^2 = 0 \)[/tex].
3. Plugging [tex]\( x = -3 \)[/tex] into the function gives us [tex]\( y = 0 - 5 = -5 \)[/tex].
Therefore, the minimum value of [tex]\( y = (x+3)^2 - 5 \)[/tex] is [tex]\(-5\)[/tex]. Since the parabola opens upwards, the range starts at [tex]\(-5\)[/tex] and extends to infinity.
So, the range of [tex]\( y = (x+3)^2 - 5 \)[/tex] is:
[tex]\[ [-5, \infty) \][/tex]
### Correct Answer:
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\([-5, \infty)\)[/tex]
From the given options, the correct choice is:
B.
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]
[tex]\[ \text{Range: } [-5, \infty) \][/tex]
### Domain:
The domain of a function refers to the set of all possible input values (x-values) that the function can accept without any restrictions. Here, [tex]\( y = (x+3)^2 - 5 \)[/tex] is a quadratic function, which is defined for all real numbers.
So, the domain of [tex]\( y = (x+3)^2 - 5 \)[/tex] is:
[tex]\[ (-\infty, \infty) \][/tex]
### Range:
The range of a function refers to the set of all possible output values (y-values) that the function can produce.
To find the range of [tex]\( y = (x+3)^2 - 5 \)[/tex]:
1. Note that [tex]\((x+3)^2\)[/tex] is a quadratic function that opens upwards, meaning it has a minimum value at its vertex.
2. The vertex of [tex]\( (x+3)^2 \)[/tex] is at [tex]\( x = -3 \)[/tex], and the value at the vertex is 0; thus, when [tex]\( x = -3 \)[/tex], [tex]\( (x+3)^2 = 0 \)[/tex].
3. Plugging [tex]\( x = -3 \)[/tex] into the function gives us [tex]\( y = 0 - 5 = -5 \)[/tex].
Therefore, the minimum value of [tex]\( y = (x+3)^2 - 5 \)[/tex] is [tex]\(-5\)[/tex]. Since the parabola opens upwards, the range starts at [tex]\(-5\)[/tex] and extends to infinity.
So, the range of [tex]\( y = (x+3)^2 - 5 \)[/tex] is:
[tex]\[ [-5, \infty) \][/tex]
### Correct Answer:
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\([-5, \infty)\)[/tex]
From the given options, the correct choice is:
B.
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]
[tex]\[ \text{Range: } [-5, \infty) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.