Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve the problem step by step.
You have a probability distribution given as:
[tex]\[ \begin{array}{c|ccc} x & 3 & 6 & 9 \\ \hline p & 0.3 & 0.4 & 0.3 \\ \end{array} \][/tex]
We need to find the standard deviation of this probability distribution. We'll proceed through the following steps:
1. Calculate the expected value (mean) [tex]\( \mu \)[/tex] of the distribution:
[tex]\[ \mu = \sum_{i} (x_{i} \cdot p_{i}) \][/tex]
Plug in the values:
[tex]\[ \mu = (3 \times 0.3) + (6 \times 0.4) + (9 \times 0.3) \][/tex]
[tex]\[ \mu = 0.9 + 2.4 + 2.7 \][/tex]
[tex]\[ \mu = 6.0 \][/tex]
2. Calculate the variance [tex]\( \sigma^2 \)[/tex]:
The variance is calculated using:
[tex]\[ \sigma^2 = \sum_{i} \left( (x_{i} - \mu)^2 \cdot p_{i} \right) \][/tex]
Plug in the values:
[tex]\[ \sigma^2 = (3 - 6)^2 \times 0.3 + (6 - 6)^2 \times 0.4 + (9 - 6)^2 \times 0.3 \][/tex]
[tex]\[ = (-3)^2 \times 0.3 + 0^2 \times 0.4 + 3^2 \times 0.3 \][/tex]
[tex]\[ = 9 \times 0.3 + 0 \times 0.4 + 9 \times 0.3 \][/tex]
[tex]\[ = 2.7 + 0 + 2.7 \][/tex]
[tex]\[ = 5.4 \][/tex]
3. Calculate the standard deviation [tex]\( \sigma \)[/tex]:
Standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Plug in the variance:
[tex]\[ \sigma = \sqrt{5.4} \][/tex]
[tex]\[ \sigma \approx 2.32 \][/tex]
So, the value of the standard deviation is approximately [tex]\( 2.32 \)[/tex], which matches the provided numerical result.
Therefore, the value in the options that corresponds to this result is:
[tex]\[ \boxed{2.32} \][/tex]
You have a probability distribution given as:
[tex]\[ \begin{array}{c|ccc} x & 3 & 6 & 9 \\ \hline p & 0.3 & 0.4 & 0.3 \\ \end{array} \][/tex]
We need to find the standard deviation of this probability distribution. We'll proceed through the following steps:
1. Calculate the expected value (mean) [tex]\( \mu \)[/tex] of the distribution:
[tex]\[ \mu = \sum_{i} (x_{i} \cdot p_{i}) \][/tex]
Plug in the values:
[tex]\[ \mu = (3 \times 0.3) + (6 \times 0.4) + (9 \times 0.3) \][/tex]
[tex]\[ \mu = 0.9 + 2.4 + 2.7 \][/tex]
[tex]\[ \mu = 6.0 \][/tex]
2. Calculate the variance [tex]\( \sigma^2 \)[/tex]:
The variance is calculated using:
[tex]\[ \sigma^2 = \sum_{i} \left( (x_{i} - \mu)^2 \cdot p_{i} \right) \][/tex]
Plug in the values:
[tex]\[ \sigma^2 = (3 - 6)^2 \times 0.3 + (6 - 6)^2 \times 0.4 + (9 - 6)^2 \times 0.3 \][/tex]
[tex]\[ = (-3)^2 \times 0.3 + 0^2 \times 0.4 + 3^2 \times 0.3 \][/tex]
[tex]\[ = 9 \times 0.3 + 0 \times 0.4 + 9 \times 0.3 \][/tex]
[tex]\[ = 2.7 + 0 + 2.7 \][/tex]
[tex]\[ = 5.4 \][/tex]
3. Calculate the standard deviation [tex]\( \sigma \)[/tex]:
Standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Plug in the variance:
[tex]\[ \sigma = \sqrt{5.4} \][/tex]
[tex]\[ \sigma \approx 2.32 \][/tex]
So, the value of the standard deviation is approximately [tex]\( 2.32 \)[/tex], which matches the provided numerical result.
Therefore, the value in the options that corresponds to this result is:
[tex]\[ \boxed{2.32} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.