Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step by step.
You have a probability distribution given as:
[tex]\[ \begin{array}{c|ccc} x & 3 & 6 & 9 \\ \hline p & 0.3 & 0.4 & 0.3 \\ \end{array} \][/tex]
We need to find the standard deviation of this probability distribution. We'll proceed through the following steps:
1. Calculate the expected value (mean) [tex]\( \mu \)[/tex] of the distribution:
[tex]\[ \mu = \sum_{i} (x_{i} \cdot p_{i}) \][/tex]
Plug in the values:
[tex]\[ \mu = (3 \times 0.3) + (6 \times 0.4) + (9 \times 0.3) \][/tex]
[tex]\[ \mu = 0.9 + 2.4 + 2.7 \][/tex]
[tex]\[ \mu = 6.0 \][/tex]
2. Calculate the variance [tex]\( \sigma^2 \)[/tex]:
The variance is calculated using:
[tex]\[ \sigma^2 = \sum_{i} \left( (x_{i} - \mu)^2 \cdot p_{i} \right) \][/tex]
Plug in the values:
[tex]\[ \sigma^2 = (3 - 6)^2 \times 0.3 + (6 - 6)^2 \times 0.4 + (9 - 6)^2 \times 0.3 \][/tex]
[tex]\[ = (-3)^2 \times 0.3 + 0^2 \times 0.4 + 3^2 \times 0.3 \][/tex]
[tex]\[ = 9 \times 0.3 + 0 \times 0.4 + 9 \times 0.3 \][/tex]
[tex]\[ = 2.7 + 0 + 2.7 \][/tex]
[tex]\[ = 5.4 \][/tex]
3. Calculate the standard deviation [tex]\( \sigma \)[/tex]:
Standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Plug in the variance:
[tex]\[ \sigma = \sqrt{5.4} \][/tex]
[tex]\[ \sigma \approx 2.32 \][/tex]
So, the value of the standard deviation is approximately [tex]\( 2.32 \)[/tex], which matches the provided numerical result.
Therefore, the value in the options that corresponds to this result is:
[tex]\[ \boxed{2.32} \][/tex]
You have a probability distribution given as:
[tex]\[ \begin{array}{c|ccc} x & 3 & 6 & 9 \\ \hline p & 0.3 & 0.4 & 0.3 \\ \end{array} \][/tex]
We need to find the standard deviation of this probability distribution. We'll proceed through the following steps:
1. Calculate the expected value (mean) [tex]\( \mu \)[/tex] of the distribution:
[tex]\[ \mu = \sum_{i} (x_{i} \cdot p_{i}) \][/tex]
Plug in the values:
[tex]\[ \mu = (3 \times 0.3) + (6 \times 0.4) + (9 \times 0.3) \][/tex]
[tex]\[ \mu = 0.9 + 2.4 + 2.7 \][/tex]
[tex]\[ \mu = 6.0 \][/tex]
2. Calculate the variance [tex]\( \sigma^2 \)[/tex]:
The variance is calculated using:
[tex]\[ \sigma^2 = \sum_{i} \left( (x_{i} - \mu)^2 \cdot p_{i} \right) \][/tex]
Plug in the values:
[tex]\[ \sigma^2 = (3 - 6)^2 \times 0.3 + (6 - 6)^2 \times 0.4 + (9 - 6)^2 \times 0.3 \][/tex]
[tex]\[ = (-3)^2 \times 0.3 + 0^2 \times 0.4 + 3^2 \times 0.3 \][/tex]
[tex]\[ = 9 \times 0.3 + 0 \times 0.4 + 9 \times 0.3 \][/tex]
[tex]\[ = 2.7 + 0 + 2.7 \][/tex]
[tex]\[ = 5.4 \][/tex]
3. Calculate the standard deviation [tex]\( \sigma \)[/tex]:
Standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
Plug in the variance:
[tex]\[ \sigma = \sqrt{5.4} \][/tex]
[tex]\[ \sigma \approx 2.32 \][/tex]
So, the value of the standard deviation is approximately [tex]\( 2.32 \)[/tex], which matches the provided numerical result.
Therefore, the value in the options that corresponds to this result is:
[tex]\[ \boxed{2.32} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.