Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which function has a domain of [tex]\((-\infty, \infty)\)[/tex] and a range of [tex]\((-\infty, 4]\)[/tex], we need to examine the domain and range of each of the given functions:
### Function 1: [tex]\( f(x) = -x^2 + 4 \)[/tex]
- Domain: The function [tex]\( f(x) = -x^2 + 4 \)[/tex] is a quadratic function and is defined for all real numbers [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: To determine the range, note that [tex]\( -x^2 + 4 \)[/tex] is a downward-opening parabola with a vertex at [tex]\((0, 4)\)[/tex]. This means that the maximum value is 4, and as [tex]\( x \)[/tex] moves away from 0, the value of the function decreases indefinitely.
Thus, the range of [tex]\( f(x) = -x^2 + 4 \)[/tex] is [tex]\((-\infty, 4]\)[/tex].
### Function 2: [tex]\( f(x) = 2^x + 4 \)[/tex]
- Domain: The exponential function [tex]\( 2^x \)[/tex] is defined for all real numbers [tex]\( x \)[/tex], so [tex]\( 2^x + 4 \)[/tex] is also defined for all [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: Since [tex]\( 2^x \)[/tex] is always positive and increases asymptotically from 0 to [tex]\(\infty\)[/tex], [tex]\( 2^x + 4 \)[/tex] ranges from [tex]\( 4 \)[/tex] to [tex]\(\infty\)[/tex].
Thus, the range of [tex]\( f(x) = 2^x + 4 \)[/tex] is [tex]\((4, \infty)\)[/tex].
### Function 3: [tex]\( f(x) = x + 4 \)[/tex]
- Domain: The linear function [tex]\( x + 4 \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: Since a linear function [tex]\( x + 4 \)[/tex] can take any real value depending on [tex]\( x \)[/tex], its range is also all real numbers.
Thus, the range of [tex]\( f(x) = x + 4 \)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
### Function 4: [tex]\( f(x) = -4x \)[/tex]
- Domain: The linear function [tex]\( -4x \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: Similar to the previous linear function, [tex]\( -4x \)[/tex] can take any real value as [tex]\( x \)[/tex] can be any real number. Therefore, its range is also all real numbers.
Thus, the range of [tex]\( f(x) = -4x \)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
### Conclusion
The function that satisfies both conditions, having a domain of [tex]\((-\infty, \infty)\)[/tex] and a range of [tex]\((-\infty, 4]\)[/tex], is:
[tex]\[ f(x) = -x^2 + 4 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
### Function 1: [tex]\( f(x) = -x^2 + 4 \)[/tex]
- Domain: The function [tex]\( f(x) = -x^2 + 4 \)[/tex] is a quadratic function and is defined for all real numbers [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: To determine the range, note that [tex]\( -x^2 + 4 \)[/tex] is a downward-opening parabola with a vertex at [tex]\((0, 4)\)[/tex]. This means that the maximum value is 4, and as [tex]\( x \)[/tex] moves away from 0, the value of the function decreases indefinitely.
Thus, the range of [tex]\( f(x) = -x^2 + 4 \)[/tex] is [tex]\((-\infty, 4]\)[/tex].
### Function 2: [tex]\( f(x) = 2^x + 4 \)[/tex]
- Domain: The exponential function [tex]\( 2^x \)[/tex] is defined for all real numbers [tex]\( x \)[/tex], so [tex]\( 2^x + 4 \)[/tex] is also defined for all [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: Since [tex]\( 2^x \)[/tex] is always positive and increases asymptotically from 0 to [tex]\(\infty\)[/tex], [tex]\( 2^x + 4 \)[/tex] ranges from [tex]\( 4 \)[/tex] to [tex]\(\infty\)[/tex].
Thus, the range of [tex]\( f(x) = 2^x + 4 \)[/tex] is [tex]\((4, \infty)\)[/tex].
### Function 3: [tex]\( f(x) = x + 4 \)[/tex]
- Domain: The linear function [tex]\( x + 4 \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: Since a linear function [tex]\( x + 4 \)[/tex] can take any real value depending on [tex]\( x \)[/tex], its range is also all real numbers.
Thus, the range of [tex]\( f(x) = x + 4 \)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
### Function 4: [tex]\( f(x) = -4x \)[/tex]
- Domain: The linear function [tex]\( -4x \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, its domain is [tex]\((-\infty, \infty)\)[/tex].
- Range: Similar to the previous linear function, [tex]\( -4x \)[/tex] can take any real value as [tex]\( x \)[/tex] can be any real number. Therefore, its range is also all real numbers.
Thus, the range of [tex]\( f(x) = -4x \)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
### Conclusion
The function that satisfies both conditions, having a domain of [tex]\((-\infty, \infty)\)[/tex] and a range of [tex]\((-\infty, 4]\)[/tex], is:
[tex]\[ f(x) = -x^2 + 4 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.