Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given functions represents an exponential growth function, we need to analyze the base [tex]\( b \)[/tex] of the exponential term [tex]\( b^x \)[/tex]. An exponential growth function is characterized by a base [tex]\( b \)[/tex] where [tex]\( b > 1 \)[/tex].
Let's examine each function step by step:
1. [tex]\( f(x) = 6(0.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = 0.25(5.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 > 1 \)[/tex], this function represents exponential growth.
3. [tex]\( f(x) = -4.25^x \)[/tex]:
- The base of the exponential term here is [tex]\( -4.25 \)[/tex].
- Generally, negative bases for exponents are not considered typical exponential growth functions, as the function can have complex and alternating behavior depending on whether [tex]\( x \)[/tex] is an integer or not.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( -1.25 \)[/tex].
- Similar to the previous case, negative bases are not treated as generic exponential growth functions due to potential complex and alternating behavior.
Among the given options, the function [tex]\( f(x) = 0.25(5.25)^x \)[/tex] is the one that represents exponential growth because the base [tex]\( 5.25 \)[/tex] is greater than [tex]\( 1 \)[/tex].
Therefore, the correct answer is:
Option 2: [tex]\( f(x) = 0.25(5.25)^x \)[/tex]
Let's examine each function step by step:
1. [tex]\( f(x) = 6(0.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = 0.25(5.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 > 1 \)[/tex], this function represents exponential growth.
3. [tex]\( f(x) = -4.25^x \)[/tex]:
- The base of the exponential term here is [tex]\( -4.25 \)[/tex].
- Generally, negative bases for exponents are not considered typical exponential growth functions, as the function can have complex and alternating behavior depending on whether [tex]\( x \)[/tex] is an integer or not.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( -1.25 \)[/tex].
- Similar to the previous case, negative bases are not treated as generic exponential growth functions due to potential complex and alternating behavior.
Among the given options, the function [tex]\( f(x) = 0.25(5.25)^x \)[/tex] is the one that represents exponential growth because the base [tex]\( 5.25 \)[/tex] is greater than [tex]\( 1 \)[/tex].
Therefore, the correct answer is:
Option 2: [tex]\( f(x) = 0.25(5.25)^x \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.