Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which of the given functions represents an exponential growth function, we need to analyze the base [tex]\( b \)[/tex] of the exponential term [tex]\( b^x \)[/tex]. An exponential growth function is characterized by a base [tex]\( b \)[/tex] where [tex]\( b > 1 \)[/tex].
Let's examine each function step by step:
1. [tex]\( f(x) = 6(0.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = 0.25(5.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 > 1 \)[/tex], this function represents exponential growth.
3. [tex]\( f(x) = -4.25^x \)[/tex]:
- The base of the exponential term here is [tex]\( -4.25 \)[/tex].
- Generally, negative bases for exponents are not considered typical exponential growth functions, as the function can have complex and alternating behavior depending on whether [tex]\( x \)[/tex] is an integer or not.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( -1.25 \)[/tex].
- Similar to the previous case, negative bases are not treated as generic exponential growth functions due to potential complex and alternating behavior.
Among the given options, the function [tex]\( f(x) = 0.25(5.25)^x \)[/tex] is the one that represents exponential growth because the base [tex]\( 5.25 \)[/tex] is greater than [tex]\( 1 \)[/tex].
Therefore, the correct answer is:
Option 2: [tex]\( f(x) = 0.25(5.25)^x \)[/tex]
Let's examine each function step by step:
1. [tex]\( f(x) = 6(0.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = 0.25(5.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 > 1 \)[/tex], this function represents exponential growth.
3. [tex]\( f(x) = -4.25^x \)[/tex]:
- The base of the exponential term here is [tex]\( -4.25 \)[/tex].
- Generally, negative bases for exponents are not considered typical exponential growth functions, as the function can have complex and alternating behavior depending on whether [tex]\( x \)[/tex] is an integer or not.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( -1.25 \)[/tex].
- Similar to the previous case, negative bases are not treated as generic exponential growth functions due to potential complex and alternating behavior.
Among the given options, the function [tex]\( f(x) = 0.25(5.25)^x \)[/tex] is the one that represents exponential growth because the base [tex]\( 5.25 \)[/tex] is greater than [tex]\( 1 \)[/tex].
Therefore, the correct answer is:
Option 2: [tex]\( f(x) = 0.25(5.25)^x \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.