Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given functions represents an exponential growth function, we need to analyze the base [tex]\( b \)[/tex] of the exponential term [tex]\( b^x \)[/tex]. An exponential growth function is characterized by a base [tex]\( b \)[/tex] where [tex]\( b > 1 \)[/tex].
Let's examine each function step by step:
1. [tex]\( f(x) = 6(0.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = 0.25(5.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 > 1 \)[/tex], this function represents exponential growth.
3. [tex]\( f(x) = -4.25^x \)[/tex]:
- The base of the exponential term here is [tex]\( -4.25 \)[/tex].
- Generally, negative bases for exponents are not considered typical exponential growth functions, as the function can have complex and alternating behavior depending on whether [tex]\( x \)[/tex] is an integer or not.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( -1.25 \)[/tex].
- Similar to the previous case, negative bases are not treated as generic exponential growth functions due to potential complex and alternating behavior.
Among the given options, the function [tex]\( f(x) = 0.25(5.25)^x \)[/tex] is the one that represents exponential growth because the base [tex]\( 5.25 \)[/tex] is greater than [tex]\( 1 \)[/tex].
Therefore, the correct answer is:
Option 2: [tex]\( f(x) = 0.25(5.25)^x \)[/tex]
Let's examine each function step by step:
1. [tex]\( f(x) = 6(0.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = 0.25(5.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 > 1 \)[/tex], this function represents exponential growth.
3. [tex]\( f(x) = -4.25^x \)[/tex]:
- The base of the exponential term here is [tex]\( -4.25 \)[/tex].
- Generally, negative bases for exponents are not considered typical exponential growth functions, as the function can have complex and alternating behavior depending on whether [tex]\( x \)[/tex] is an integer or not.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]:
- The base of the exponential term here is [tex]\( -1.25 \)[/tex].
- Similar to the previous case, negative bases are not treated as generic exponential growth functions due to potential complex and alternating behavior.
Among the given options, the function [tex]\( f(x) = 0.25(5.25)^x \)[/tex] is the one that represents exponential growth because the base [tex]\( 5.25 \)[/tex] is greater than [tex]\( 1 \)[/tex].
Therefore, the correct answer is:
Option 2: [tex]\( f(x) = 0.25(5.25)^x \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.