Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which equations represent circles with a diameter of 12 units and a center that lies on the y-axis, let's break down the problem step-by-step.
### Step 1: Understand the Characteristics of the Circle
- Diameter: 12 units.
- Radius: The radius [tex]\( r \)[/tex] is half of the diameter, so [tex]\( r = \frac{12}{2} = 6 \)[/tex] units.
- Standard Form of a Circle's Equation: [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center, and [tex]\( r \)[/tex] is the radius.
- The center must lie on the [tex]\( y \)[/tex]-axis, meaning the x-coordinate of the center must be 0. Therefore, the equation will have the form [tex]\(x^2 + (y - k)^2 = r^2\)[/tex], with [tex]\(h = 0\)[/tex].
### Step 2: Determine the Equation Parameters
- Radius Squared: The radius is 6, so the radius squared [tex]\( r^2 = 6^2 = 36 \)[/tex].
### Step 3: Check Each Given Equation to See if it Matches the Requirements
1. Equation: [tex]\(x^2 + (y - 3)^2 = 36\)[/tex]
- Form: [tex]\(x^2 + (y - k)^2 = r^2\)[/tex]
- Center: [tex]\((0, 3)\)[/tex]
- Radius squared: [tex]\(36\)[/tex]
- This equation matches the requirements.
2. Equation: [tex]\(x^2 + (y - 5)^2 = 6\)[/tex]
- Form: [tex]\(x^2 + (y - k)^2 = r^2\)[/tex]
- Center: [tex]\((0, 5)\)[/tex]
- Radius squared: [tex]\(6\)[/tex]
- This equation does not match because the radius squared is not 36.
3. Equation: [tex]\((x - 4)^2 + y^2 = 36\)[/tex]
- Form: [tex]\((x - h)^2 + y^2 = r^2\)[/tex]
- Center: [tex]\((4, 0)\)[/tex]
- Radius squared: [tex]\(36\)[/tex]
- This does not match because the center is not on the y-axis.
4. Equation: [tex]\((x + 6)^2 + y^2 = 144\)[/tex]
- Form: [tex]\((x - h)^2 + y^2 = r^2\)[/tex]
- Center: [tex]\((-6, 0)\)[/tex]
- Radius squared: [tex]\(144\)[/tex]
- This does not match because the radius squared is not 36 and the center is not on the y-axis.
5. Equation: [tex]\(x^2 + (y + 8)^2 = 36\)[/tex]
- Form: [tex]\(x^2 + (y - k)^2 = r^2\)[/tex]
- Center: [tex]\((0, -8)\)[/tex]
- Radius squared: [tex]\(36\)[/tex]
- This equation matches the requirements.
### Conclusion
The two equations that represent circles with a diameter of 12 units and centered on the y-axis are:
1. [tex]\(x^2 + (y - 3)^2 = 36\)[/tex]
2. [tex]\(x^2 + (y + 8)^2 = 36\)[/tex]
### Step 1: Understand the Characteristics of the Circle
- Diameter: 12 units.
- Radius: The radius [tex]\( r \)[/tex] is half of the diameter, so [tex]\( r = \frac{12}{2} = 6 \)[/tex] units.
- Standard Form of a Circle's Equation: [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center, and [tex]\( r \)[/tex] is the radius.
- The center must lie on the [tex]\( y \)[/tex]-axis, meaning the x-coordinate of the center must be 0. Therefore, the equation will have the form [tex]\(x^2 + (y - k)^2 = r^2\)[/tex], with [tex]\(h = 0\)[/tex].
### Step 2: Determine the Equation Parameters
- Radius Squared: The radius is 6, so the radius squared [tex]\( r^2 = 6^2 = 36 \)[/tex].
### Step 3: Check Each Given Equation to See if it Matches the Requirements
1. Equation: [tex]\(x^2 + (y - 3)^2 = 36\)[/tex]
- Form: [tex]\(x^2 + (y - k)^2 = r^2\)[/tex]
- Center: [tex]\((0, 3)\)[/tex]
- Radius squared: [tex]\(36\)[/tex]
- This equation matches the requirements.
2. Equation: [tex]\(x^2 + (y - 5)^2 = 6\)[/tex]
- Form: [tex]\(x^2 + (y - k)^2 = r^2\)[/tex]
- Center: [tex]\((0, 5)\)[/tex]
- Radius squared: [tex]\(6\)[/tex]
- This equation does not match because the radius squared is not 36.
3. Equation: [tex]\((x - 4)^2 + y^2 = 36\)[/tex]
- Form: [tex]\((x - h)^2 + y^2 = r^2\)[/tex]
- Center: [tex]\((4, 0)\)[/tex]
- Radius squared: [tex]\(36\)[/tex]
- This does not match because the center is not on the y-axis.
4. Equation: [tex]\((x + 6)^2 + y^2 = 144\)[/tex]
- Form: [tex]\((x - h)^2 + y^2 = r^2\)[/tex]
- Center: [tex]\((-6, 0)\)[/tex]
- Radius squared: [tex]\(144\)[/tex]
- This does not match because the radius squared is not 36 and the center is not on the y-axis.
5. Equation: [tex]\(x^2 + (y + 8)^2 = 36\)[/tex]
- Form: [tex]\(x^2 + (y - k)^2 = r^2\)[/tex]
- Center: [tex]\((0, -8)\)[/tex]
- Radius squared: [tex]\(36\)[/tex]
- This equation matches the requirements.
### Conclusion
The two equations that represent circles with a diameter of 12 units and centered on the y-axis are:
1. [tex]\(x^2 + (y - 3)^2 = 36\)[/tex]
2. [tex]\(x^2 + (y + 8)^2 = 36\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.