Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve for [tex]\( a \)[/tex]:

[tex]\[ -4 = a(0 + 4)^2 - 12 \][/tex]


Sagot :

Alright, let's solve the given equation step-by-step:

The given equation is:
[tex]\[ -4 = a(0 + 4)^2 - 12 \][/tex]

First, simplify the expression inside the parentheses:
[tex]\[ 0 + 4 = 4 \][/tex]

So the equation becomes:
[tex]\[ -4 = a(4)^2 - 12 \][/tex]

Next, calculate the square of 4:
[tex]\[ 4^2 = 16 \][/tex]

Substitute this back into the equation:
[tex]\[ -4 = a \cdot 16 - 12 \][/tex]

Now, isolate the term involving [tex]\( a \)[/tex]. To do this, add 12 to both sides of the equation:
[tex]\[ -4 + 12 = a \cdot 16 - 12 + 12 \][/tex]

This simplifies to:
[tex]\[ 8 = a \cdot 16 \][/tex]

To solve for [tex]\( a \)[/tex], divide both sides by 16:
[tex]\[ a = \frac{8}{16} \][/tex]

Simplify the fraction:
[tex]\[ a = 0.5 \][/tex]

Therefore, the value of [tex]\( a \)[/tex] is:
[tex]\[ a = 0.5 \][/tex]