Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve for [tex]\( x \)[/tex].

[tex]\[ 6x + 7 = 3x + 19 \][/tex]


Sagot :

Sure, let's solve the equation step-by-step:

The given equation is:
[tex]\[ 6x + 7 = 3x + 19 \][/tex]

1. Isolate the variable terms on one side:

To start, we want to get all the [tex]\( x \)[/tex]-terms on one side of the equation. We can do this by subtracting [tex]\( 3x \)[/tex] from both sides:
[tex]\[ 6x + 7 - 3x = 3x + 19 - 3x \][/tex]
Simplify this:
[tex]\[ 3x + 7 = 19 \][/tex]

2. Isolate the constant term on the other side:

Next, we want to isolate the term with [tex]\( x \)[/tex] by getting rid of the constant on the left side. We do this by subtracting 7 from both sides of the equation:
[tex]\[ 3x + 7 - 7 = 19 - 7 \][/tex]
Simplify this:
[tex]\[ 3x = 12 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Finally, to solve for [tex]\( x \)[/tex], we need to divide both sides of the equation by 3:
[tex]\[ x = \frac{12}{3} \][/tex]
Simplify this:
[tex]\[ x = 4 \][/tex]

So, the solution to the equation [tex]\( 6x + 7 = 3x + 19 \)[/tex] is:
[tex]\[ x = 4 \][/tex]