Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which points are solutions to the linear inequality [tex]y \ \textless \ 0.5x + 2[/tex]? Select three options:

A. [tex]\((-3, -2)\)[/tex]

B. [tex]\((-2, 1)\)[/tex]

C. [tex]\((-1, -2)\)[/tex]

D. [tex]\((-1, 2)\)[/tex]

E. [tex]\((1, -2)\)[/tex]

Sagot :

Let's examine each point to determine if it satisfies the inequality [tex]\( y < 0.5x + 2 \)[/tex].

1. Point [tex]\((-3, -2)\)[/tex]:
- Substitute [tex]\( x = -3 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ -2 < 0.5(-3) + 2 \][/tex]
[tex]\[ -2 < -1.5 + 2 \][/tex]
[tex]\[ -2 < 0.5 \][/tex]
This inequality is true. Therefore, [tex]\((-3, -2)\)[/tex] is a solution.

2. Point [tex]\((-2, 1)\)[/tex]:
- Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = 1 \)[/tex] into the inequality:
[tex]\[ 1 < 0.5(-2) + 2 \][/tex]
[tex]\[ 1 < -1 + 2 \][/tex]
[tex]\[ 1 < 1 \][/tex]
This inequality is not true because 1 is not less than 1. Therefore, [tex]\((-2, 1)\)[/tex] is not a solution.

3. Point [tex]\((-1, -2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ -2 < 0.5(-1) + 2 \][/tex]
[tex]\[ -2 < -0.5 + 2 \][/tex]
[tex]\[ -2 < 1.5 \][/tex]
This inequality is true. Therefore, [tex]\((-1, -2)\)[/tex] is a solution.

4. Point [tex]\((-1, 2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex] into the inequality:
[tex]\[ 2 < 0.5(-1) + 2 \][/tex]
[tex]\[ 2 < -0.5 + 2 \][/tex]
[tex]\[ 2 < 1.5 \][/tex]
This inequality is not true because 2 is not less than 1.5. Therefore, [tex]\((-1, 2)\)[/tex] is not a solution.

5. Point [tex]\((1, -2)\)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = -2 \)[/tex] into the inequality:
[tex]\[ -2 < 0.5(1) + 2 \][/tex]
[tex]\[ -2 < 0.5 + 2 \][/tex]
[tex]\[ -2 < 2.5 \][/tex]
This inequality is true. Therefore, [tex]\((1, -2)\)[/tex] is a solution.

Based on our analysis, the points that are solutions to the inequality [tex]\( y < 0.5x + 2 \)[/tex] are:

- [tex]\((-3, -2)\)[/tex]
- [tex]\((-1, -2)\)[/tex]
- [tex]\((1, -2)\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.