Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let’s analyze and solve this problem step-by-step.
1. Cosine of 60 Degrees:
We know that:
[tex]\[\sin 30^\circ = \frac{1}{2}\][/tex]
Using the complementary angle identity for sine and cosine, which states:
[tex]\[\cos 60^\circ = \sin 30^\circ\][/tex]
We have:
[tex]\[\cos 60^\circ = \frac{1}{2}\][/tex]
2. Evaluating the Given Expressions:
Let's evaluate and compare each of the given mathematical expressions:
- Expression 1: [tex]\(60 \div \frac{1}{2}\)[/tex]
Division by a fraction is equivalent to multiplication by its reciprocal. Thus:
[tex]\[ 60 \div \frac{1}{2} = 60 \times 2 = 120 \][/tex]
- Expression 2: [tex]\(30 \div \frac{\sqrt{2}}{2}\)[/tex]
Here we're dividing 30 by the fraction [tex]\(\frac{\sqrt{2}}{2}\)[/tex], so:
[tex]\[ 30 \div \frac{\sqrt{2}}{2} = 30 \times \frac{2}{\sqrt{2}} = 30 \times \frac{2}{\sqrt{2}} = 30 \times \frac{2\sqrt{2}}{2} = 30 \sqrt{2} = 30 \times 1.4142 \approx 42.4264 \][/tex]
- Expression 3: [tex]\(60 \div \frac{\sqrt{3}}{2}\)[/tex]
Similarly, dividing 60 by [tex]\(\frac{\sqrt{3}}{2}\)[/tex] gives:
[tex]\[ 60 \div \frac{\sqrt{3}}{2} = 60 \times \frac{2}{\sqrt{3}} = 60 \times \frac{2\sqrt{3}}{3} = \frac{120}{\sqrt{3}} = \frac{120\sqrt{3}}{3} = 40 \sqrt{3} = 40 \times 1.7320 \approx 69.2820 \][/tex]
- Expression 4: [tex]\(30^\circ : 1\)[/tex]
This means just comparing the number 30 with 1:
[tex]\[ 30 = 1 \][/tex]
3. Summary of Results:
Let's compile the evaluated results:
- [tex]\(\cos 60^\circ = 0.5\)[/tex]
- [tex]\(60 \div \frac{1}{2} = 120\)[/tex]
- [tex]\(30 \div \frac{\sqrt{2}}{2} \approx 42.4264\)[/tex]
- [tex]\(60 \div \frac{\sqrt{3}}{2} \approx 69.2820\)[/tex]
- [tex]\(30^\circ : 1 = 1\)[/tex]
So the matching results are:
- [tex]\(\cos 60^\circ = 0.5\)[/tex]
Therefore, amongst the expressions given for comparison, there is no match for exactly [tex]\( \cos 60^\circ \)[/tex], however, we calculated logical results for each of them.
1. Cosine of 60 Degrees:
We know that:
[tex]\[\sin 30^\circ = \frac{1}{2}\][/tex]
Using the complementary angle identity for sine and cosine, which states:
[tex]\[\cos 60^\circ = \sin 30^\circ\][/tex]
We have:
[tex]\[\cos 60^\circ = \frac{1}{2}\][/tex]
2. Evaluating the Given Expressions:
Let's evaluate and compare each of the given mathematical expressions:
- Expression 1: [tex]\(60 \div \frac{1}{2}\)[/tex]
Division by a fraction is equivalent to multiplication by its reciprocal. Thus:
[tex]\[ 60 \div \frac{1}{2} = 60 \times 2 = 120 \][/tex]
- Expression 2: [tex]\(30 \div \frac{\sqrt{2}}{2}\)[/tex]
Here we're dividing 30 by the fraction [tex]\(\frac{\sqrt{2}}{2}\)[/tex], so:
[tex]\[ 30 \div \frac{\sqrt{2}}{2} = 30 \times \frac{2}{\sqrt{2}} = 30 \times \frac{2}{\sqrt{2}} = 30 \times \frac{2\sqrt{2}}{2} = 30 \sqrt{2} = 30 \times 1.4142 \approx 42.4264 \][/tex]
- Expression 3: [tex]\(60 \div \frac{\sqrt{3}}{2}\)[/tex]
Similarly, dividing 60 by [tex]\(\frac{\sqrt{3}}{2}\)[/tex] gives:
[tex]\[ 60 \div \frac{\sqrt{3}}{2} = 60 \times \frac{2}{\sqrt{3}} = 60 \times \frac{2\sqrt{3}}{3} = \frac{120}{\sqrt{3}} = \frac{120\sqrt{3}}{3} = 40 \sqrt{3} = 40 \times 1.7320 \approx 69.2820 \][/tex]
- Expression 4: [tex]\(30^\circ : 1\)[/tex]
This means just comparing the number 30 with 1:
[tex]\[ 30 = 1 \][/tex]
3. Summary of Results:
Let's compile the evaluated results:
- [tex]\(\cos 60^\circ = 0.5\)[/tex]
- [tex]\(60 \div \frac{1}{2} = 120\)[/tex]
- [tex]\(30 \div \frac{\sqrt{2}}{2} \approx 42.4264\)[/tex]
- [tex]\(60 \div \frac{\sqrt{3}}{2} \approx 69.2820\)[/tex]
- [tex]\(30^\circ : 1 = 1\)[/tex]
So the matching results are:
- [tex]\(\cos 60^\circ = 0.5\)[/tex]
Therefore, amongst the expressions given for comparison, there is no match for exactly [tex]\( \cos 60^\circ \)[/tex], however, we calculated logical results for each of them.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.