Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To tackle the problem of simplifying the expression [tex]\( 5 - 5(2 + x)(3 - x) \)[/tex], we will break it down step by step.
1. Distribute inside the parentheses: First, we need to expand the product [tex]\((2 + x)(3 - x)\)[/tex].
2. Use the distributive property (FOIL method):
[tex]\[ (2 + x)(3 - x) = 2 \cdot 3 + 2 \cdot (-x) + x \cdot 3 + x \cdot (-x) \][/tex]
Breaking it down:
[tex]\[ = 6 - 2x + 3x - x^2 \][/tex]
3. Combine like terms within the expanded expression:
[tex]\[ 6 - 2x + 3x - x^2 = 6 + x - x^2 \][/tex]
4. Consider the expression within the original problem: Now replace the expanded form back into the original expression.
[tex]\[ 5 - 5(6 + x - x^2) \][/tex]
5. Distribute [tex]\(-5\)[/tex] through the parentheses: Multiply each term inside the parentheses by [tex]\(-5\)[/tex]:
[tex]\[ 5 - (5 \cdot 6 + 5 \cdot x - 5 \cdot x^2) = 5 - (30 + 5x - 5x^2) \][/tex]
6. Simplify the result: Expand the subtraction:
[tex]\[ 5 - 30 - 5x + 5x^2 \][/tex]
7. Combine the constants and terms:
[tex]\[ 5x^2 - 5x - 25 \][/tex]
Thus, the simplified form of the expression [tex]\(5 - 5(2 + x)(3 - x)\)[/tex] is:
[tex]\[ 5x^2 - 5x - 25 \][/tex]
This is the final simplified expression.
1. Distribute inside the parentheses: First, we need to expand the product [tex]\((2 + x)(3 - x)\)[/tex].
2. Use the distributive property (FOIL method):
[tex]\[ (2 + x)(3 - x) = 2 \cdot 3 + 2 \cdot (-x) + x \cdot 3 + x \cdot (-x) \][/tex]
Breaking it down:
[tex]\[ = 6 - 2x + 3x - x^2 \][/tex]
3. Combine like terms within the expanded expression:
[tex]\[ 6 - 2x + 3x - x^2 = 6 + x - x^2 \][/tex]
4. Consider the expression within the original problem: Now replace the expanded form back into the original expression.
[tex]\[ 5 - 5(6 + x - x^2) \][/tex]
5. Distribute [tex]\(-5\)[/tex] through the parentheses: Multiply each term inside the parentheses by [tex]\(-5\)[/tex]:
[tex]\[ 5 - (5 \cdot 6 + 5 \cdot x - 5 \cdot x^2) = 5 - (30 + 5x - 5x^2) \][/tex]
6. Simplify the result: Expand the subtraction:
[tex]\[ 5 - 30 - 5x + 5x^2 \][/tex]
7. Combine the constants and terms:
[tex]\[ 5x^2 - 5x - 25 \][/tex]
Thus, the simplified form of the expression [tex]\(5 - 5(2 + x)(3 - x)\)[/tex] is:
[tex]\[ 5x^2 - 5x - 25 \][/tex]
This is the final simplified expression.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.