Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the exact value of [tex]\(\tan \left(\frac{3 \pi}{4}\right)\)[/tex], follow these steps:
1. Understand the angle [tex]\(\frac{3 \pi}{4}\)[/tex]:
- The angle [tex]\(\frac{3 \pi}{4}\)[/tex] radians is in the second quadrant of the unit circle.
- This is equivalent to 135 degrees.
2. Recall the properties of tangent function:
- In the unit circle, the tangent of an angle is defined as [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
- In the second quadrant, the sine function is positive, and the cosine function is negative, making the tangent function negative.
3. Use the reference angle:
- The reference angle for [tex]\(\frac{3 \pi}{4}\)[/tex] is [tex]\(\pi/4\)[/tex] (or 45 degrees), as [tex]\(\frac{3 \pi}{4} = \pi - \pi/4\)[/tex].
4. Know the tangent of the reference angle:
- The tangent of [tex]\(\pi/4\)[/tex] (45 degrees) is 1, i.e., [tex]\(\tan(\pi/4) = 1\)[/tex].
5. Determine the sign in the second quadrant:
- Since the tangent function is negative in the second quadrant, [tex]\(\tan \left(\frac{3 \pi}{4}\right) = -\tan \left(\frac{\pi}{4}\right)\)[/tex].
6. Compute the value:
- Therefore, [tex]\(\tan \left(\frac{3 \pi}{4}\right) = -1\)[/tex].
Given the possible answers:
- [tex]\(-2 \sqrt{2}\)[/tex]
- [tex]\(1\)[/tex]
- [tex]\(-1\)[/tex]
- [tex]\(2 \sqrt{2}\)[/tex]
The exact value of [tex]\(\tan \left(\frac{3 \pi}{4}\right)\)[/tex] is [tex]\(-1\)[/tex].
1. Understand the angle [tex]\(\frac{3 \pi}{4}\)[/tex]:
- The angle [tex]\(\frac{3 \pi}{4}\)[/tex] radians is in the second quadrant of the unit circle.
- This is equivalent to 135 degrees.
2. Recall the properties of tangent function:
- In the unit circle, the tangent of an angle is defined as [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
- In the second quadrant, the sine function is positive, and the cosine function is negative, making the tangent function negative.
3. Use the reference angle:
- The reference angle for [tex]\(\frac{3 \pi}{4}\)[/tex] is [tex]\(\pi/4\)[/tex] (or 45 degrees), as [tex]\(\frac{3 \pi}{4} = \pi - \pi/4\)[/tex].
4. Know the tangent of the reference angle:
- The tangent of [tex]\(\pi/4\)[/tex] (45 degrees) is 1, i.e., [tex]\(\tan(\pi/4) = 1\)[/tex].
5. Determine the sign in the second quadrant:
- Since the tangent function is negative in the second quadrant, [tex]\(\tan \left(\frac{3 \pi}{4}\right) = -\tan \left(\frac{\pi}{4}\right)\)[/tex].
6. Compute the value:
- Therefore, [tex]\(\tan \left(\frac{3 \pi}{4}\right) = -1\)[/tex].
Given the possible answers:
- [tex]\(-2 \sqrt{2}\)[/tex]
- [tex]\(1\)[/tex]
- [tex]\(-1\)[/tex]
- [tex]\(2 \sqrt{2}\)[/tex]
The exact value of [tex]\(\tan \left(\frac{3 \pi}{4}\right)\)[/tex] is [tex]\(-1\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.