Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem of finding [tex]\(\sin(t)\)[/tex] and [tex]\(\sec(t)\)[/tex] given that [tex]\(\cos(t) = \frac{1}{2}\)[/tex] and [tex]\(\tan(t) > 0\)[/tex], we will follow these steps:
1. Determine the quadrant:
- [tex]\(\cos(t) > 0\)[/tex] occurs in the first and fourth quadrants.
- [tex]\(\tan(t) > 0\)[/tex] occurs in the first and third quadrants.
Since we need both conditions to be true simultaneously, the only viable quadrant is the first quadrant where [tex]\(\cos(t) > 0\)[/tex] and [tex]\(\tan(t) > 0\)[/tex].
2. Find [tex]\(\sin(t)\)[/tex]:
- In the first quadrant, all trigonometric functions are positive.
- We use the Pythagorean identity [tex]\(\cos^2(t) + \sin^2(t) = 1\)[/tex].
Given [tex]\(\cos(t) = \frac{1}{2}\)[/tex], we can find [tex]\(\sin(t)\)[/tex] as follows:
[tex]\[ \sin^2(t) = 1 - \cos^2(t) \][/tex]
[tex]\[ \sin^2(t) = 1 - \left(\frac{1}{2}\right)^2 \][/tex]
[tex]\[ \sin^2(t) = 1 - \frac{1}{4} \][/tex]
[tex]\[ \sin^2(t) = \frac{3}{4} \][/tex]
[tex]\[ \sin(t) = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \][/tex]
Since we are in the first quadrant, [tex]\(\sin(t)\)[/tex] is positive. Hence, [tex]\(\sin(t) = \frac{\sqrt{3}}{2}\)[/tex].
3. Find [tex]\(\sec(t)\)[/tex]:
- The secant function is the reciprocal of the cosine function: [tex]\(\sec(t) = \frac{1}{\cos(t)}\)[/tex].
Given [tex]\(\cos(t) = \frac{1}{2}\)[/tex],
[tex]\[ \sec(t) = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Thus, the correct values are:
[tex]\[ \sin(t) = \frac{\sqrt{3}}{2}, \quad \sec(t) = 2 \][/tex]
So, among the given options, the correct one is:
[tex]\[ \sin(t) = \frac{\sqrt{3}}{2}, \sec(t) = 2 \][/tex]
1. Determine the quadrant:
- [tex]\(\cos(t) > 0\)[/tex] occurs in the first and fourth quadrants.
- [tex]\(\tan(t) > 0\)[/tex] occurs in the first and third quadrants.
Since we need both conditions to be true simultaneously, the only viable quadrant is the first quadrant where [tex]\(\cos(t) > 0\)[/tex] and [tex]\(\tan(t) > 0\)[/tex].
2. Find [tex]\(\sin(t)\)[/tex]:
- In the first quadrant, all trigonometric functions are positive.
- We use the Pythagorean identity [tex]\(\cos^2(t) + \sin^2(t) = 1\)[/tex].
Given [tex]\(\cos(t) = \frac{1}{2}\)[/tex], we can find [tex]\(\sin(t)\)[/tex] as follows:
[tex]\[ \sin^2(t) = 1 - \cos^2(t) \][/tex]
[tex]\[ \sin^2(t) = 1 - \left(\frac{1}{2}\right)^2 \][/tex]
[tex]\[ \sin^2(t) = 1 - \frac{1}{4} \][/tex]
[tex]\[ \sin^2(t) = \frac{3}{4} \][/tex]
[tex]\[ \sin(t) = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \][/tex]
Since we are in the first quadrant, [tex]\(\sin(t)\)[/tex] is positive. Hence, [tex]\(\sin(t) = \frac{\sqrt{3}}{2}\)[/tex].
3. Find [tex]\(\sec(t)\)[/tex]:
- The secant function is the reciprocal of the cosine function: [tex]\(\sec(t) = \frac{1}{\cos(t)}\)[/tex].
Given [tex]\(\cos(t) = \frac{1}{2}\)[/tex],
[tex]\[ \sec(t) = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Thus, the correct values are:
[tex]\[ \sin(t) = \frac{\sqrt{3}}{2}, \quad \sec(t) = 2 \][/tex]
So, among the given options, the correct one is:
[tex]\[ \sin(t) = \frac{\sqrt{3}}{2}, \sec(t) = 2 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.