Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the expression [tex]\(\sqrt[3]{-125 n^{12}}\)[/tex], let's break it down step by step.
### Step 1: Understanding the expression
The expression [tex]\(\sqrt[3]{-125 n^{12}}\)[/tex] represents the cube root of the product [tex]\(-125\)[/tex] and [tex]\(n^{12}\)[/tex].
### Step 2: Separating the terms
First, we write the expression as a product under the cube root:
[tex]\[ \sqrt[3]{-125 n^{12}} = \sqrt[3]{-125} \cdot \sqrt[3]{n^{12}} \][/tex]
### Step 3: Calculating the cube root of [tex]\(-125\)[/tex]
Next, we find the cube root of [tex]\(-125\)[/tex]. The value is a complex number, since taking the cube root of a negative number isn't straightforward in real numbers.
The cube root of [tex]\(-125\)[/tex] is:
[tex]\[ \sqrt[3]{-125} = 2.5 + 4.330127018922192j \][/tex]
### Step 4: Simplifying [tex]\(\sqrt[3]{n^{12}}\)[/tex]
Next, we simplify [tex]\(\sqrt[3]{n^{12}}\)[/tex]:
[tex]\[ \sqrt[3]{n^{12}} = \left( n^{12} \right)^{\frac{1}{3}} \][/tex]
Using the property of exponents [tex]\((a^m)^n = a^{mn}\)[/tex], we simplify:
[tex]\[ \left( n^{12} \right)^{\frac{1}{3}} = n^{\frac{12}{3}} = n^4 \][/tex]
### Step 5: Combining the results
We now combine the two results obtained:
[tex]\[ \sqrt[3]{-125 n^{12}} = (2.5 + 4.330127018922192j) \cdot n^4 \][/tex]
Thus, the final answer is:
[tex]\[ \sqrt[3]{-125 n^{12}} = (2.5 + 4.330127018922192j) \cdot n^4 \][/tex]
In summary, the cube root of [tex]\(-125 n^{12}\)[/tex] is [tex]\((2.5 + 4.330127018922192j) \cdot n^4\)[/tex].
### Step 1: Understanding the expression
The expression [tex]\(\sqrt[3]{-125 n^{12}}\)[/tex] represents the cube root of the product [tex]\(-125\)[/tex] and [tex]\(n^{12}\)[/tex].
### Step 2: Separating the terms
First, we write the expression as a product under the cube root:
[tex]\[ \sqrt[3]{-125 n^{12}} = \sqrt[3]{-125} \cdot \sqrt[3]{n^{12}} \][/tex]
### Step 3: Calculating the cube root of [tex]\(-125\)[/tex]
Next, we find the cube root of [tex]\(-125\)[/tex]. The value is a complex number, since taking the cube root of a negative number isn't straightforward in real numbers.
The cube root of [tex]\(-125\)[/tex] is:
[tex]\[ \sqrt[3]{-125} = 2.5 + 4.330127018922192j \][/tex]
### Step 4: Simplifying [tex]\(\sqrt[3]{n^{12}}\)[/tex]
Next, we simplify [tex]\(\sqrt[3]{n^{12}}\)[/tex]:
[tex]\[ \sqrt[3]{n^{12}} = \left( n^{12} \right)^{\frac{1}{3}} \][/tex]
Using the property of exponents [tex]\((a^m)^n = a^{mn}\)[/tex], we simplify:
[tex]\[ \left( n^{12} \right)^{\frac{1}{3}} = n^{\frac{12}{3}} = n^4 \][/tex]
### Step 5: Combining the results
We now combine the two results obtained:
[tex]\[ \sqrt[3]{-125 n^{12}} = (2.5 + 4.330127018922192j) \cdot n^4 \][/tex]
Thus, the final answer is:
[tex]\[ \sqrt[3]{-125 n^{12}} = (2.5 + 4.330127018922192j) \cdot n^4 \][/tex]
In summary, the cube root of [tex]\(-125 n^{12}\)[/tex] is [tex]\((2.5 + 4.330127018922192j) \cdot n^4\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.