Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the empirical formula of a compound given that you have 1.0 grams of sulfur (S) and 1.5 grams of oxygen (O), follow these steps:
1. Determine the molar masses of S and O:
- The molar mass of sulfur (S) is approximately 32.06 grams per mole (g/mol).
- The molar mass of oxygen (O) is approximately 16.00 grams per mole (g/mol).
2. Calculate the number of moles of each element:
- Moles of sulfur: [tex]\(\frac{1.0 \text{ grams}}{32.06 \text{ g/mol}} = 0.0312 \text{ moles}\)[/tex]
- Moles of oxygen: [tex]\(\frac{1.5 \text{ grams}}{16.00 \text{ g/mol}} = 0.09375 \text{ moles}\)[/tex]
3. Determine the simplest mole ratio of the elements:
- The smallest number of moles between sulfur and oxygen here is 0.0312.
- Calculate the ratio by dividing each element's moles by the smallest number of moles:
[tex]\[ \text{Ratio of S} = \frac{0.0312}{0.0312} = 1 \][/tex]
[tex]\[ \text{Ratio of O} = \frac{0.09375}{0.0312} = 3 \][/tex]
4. Write the empirical formula based on the mole ratio:
- Sulfur has a ratio of 1
- Oxygen has a ratio of 3
Thus, the empirical formula of the compound is [tex]\( \text{SO}_3 \)[/tex].
So, the correct answer is [tex]\( \text{SO}_3 \)[/tex].
1. Determine the molar masses of S and O:
- The molar mass of sulfur (S) is approximately 32.06 grams per mole (g/mol).
- The molar mass of oxygen (O) is approximately 16.00 grams per mole (g/mol).
2. Calculate the number of moles of each element:
- Moles of sulfur: [tex]\(\frac{1.0 \text{ grams}}{32.06 \text{ g/mol}} = 0.0312 \text{ moles}\)[/tex]
- Moles of oxygen: [tex]\(\frac{1.5 \text{ grams}}{16.00 \text{ g/mol}} = 0.09375 \text{ moles}\)[/tex]
3. Determine the simplest mole ratio of the elements:
- The smallest number of moles between sulfur and oxygen here is 0.0312.
- Calculate the ratio by dividing each element's moles by the smallest number of moles:
[tex]\[ \text{Ratio of S} = \frac{0.0312}{0.0312} = 1 \][/tex]
[tex]\[ \text{Ratio of O} = \frac{0.09375}{0.0312} = 3 \][/tex]
4. Write the empirical formula based on the mole ratio:
- Sulfur has a ratio of 1
- Oxygen has a ratio of 3
Thus, the empirical formula of the compound is [tex]\( \text{SO}_3 \)[/tex].
So, the correct answer is [tex]\( \text{SO}_3 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.