Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given equations are quadratic, we must identify the equations that take the standard form of a quadratic equation. A quadratic equation generally has the form [tex]\( ax^2 + bx + c = 0 \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are coefficients and [tex]\( a \neq 0 \)[/tex].
Let’s analyze each given equation step by step:
1. Equation: [tex]\( 2x^2 + 12x = 0 \)[/tex]
- This equation contains the term [tex]\( x^2 \)[/tex] and does not contain any higher power of [tex]\( x \)[/tex] (such as [tex]\( x^3 \)[/tex]).
- Conclusion: It is a quadratic equation.
2. Equation: [tex]\( x^2 - 2x = 4x + 1 \)[/tex]
- Rearrange the equation into the standard form:
- [tex]\( x^2 - 2x - 4x - 1 = 0 \implies x^2 - 6x - 1 = 0 \)[/tex]
- This rearrangement shows the terms [tex]\( x^2 \)[/tex] and [tex]\( x \)[/tex], with no higher powers of [tex]\( x \)[/tex].
- Conclusion: It is a quadratic equation.
3. Equation: [tex]\( x^3 - 6x^2 + 8 = 0 \)[/tex]
- This equation contains the term [tex]\( x^3 \)[/tex], which represents a cubic term.
- Conclusion: It is not a quadratic equation.
4. Equation: [tex]\( 5x - 3 = 0 \)[/tex]
- This equation is a linear equation as it contains only [tex]\( x \)[/tex] without the [tex]\( x^2 \)[/tex] term.
- Conclusion: It is not a quadratic equation.
5. Equation: [tex]\( 5x - 1 = 3x + 8 \)[/tex]
- Rearrange the equation into the standard form:
- [tex]\( 5x - 1 - 3x - 8 = 0 \implies 2x - 9 = 0 \)[/tex]
- This rearrangement shows only the term [tex]\( x \)[/tex], without the [tex]\( x^2 \)[/tex] term.
- Conclusion: It is not a quadratic equation.
6. Equation: [tex]\( 9x^2 + 6x - 3 = 0 \)[/tex]
- This equation contains the term [tex]\( x^2 \)[/tex] and other terms involving [tex]\( x \)[/tex] and constants.
- Conclusion: It is a quadratic equation.
Based on the analysis of each equation, the quadratic equations are:
1. [tex]\( 2x^2 + 12x = 0 \)[/tex]
2. [tex]\( x^2 - 2x = 4x + 1 \)[/tex]
6. [tex]\( 9x^2 + 6x - 3 = 0 \)[/tex]
Therefore, the selected quadratic equations are:
[tex]\[ 2x^2 + 12x = 0, \quad x^2 - 2x = 4x + 1, \quad 9x^2 + 6x - 3 = 0. \][/tex]
Let’s analyze each given equation step by step:
1. Equation: [tex]\( 2x^2 + 12x = 0 \)[/tex]
- This equation contains the term [tex]\( x^2 \)[/tex] and does not contain any higher power of [tex]\( x \)[/tex] (such as [tex]\( x^3 \)[/tex]).
- Conclusion: It is a quadratic equation.
2. Equation: [tex]\( x^2 - 2x = 4x + 1 \)[/tex]
- Rearrange the equation into the standard form:
- [tex]\( x^2 - 2x - 4x - 1 = 0 \implies x^2 - 6x - 1 = 0 \)[/tex]
- This rearrangement shows the terms [tex]\( x^2 \)[/tex] and [tex]\( x \)[/tex], with no higher powers of [tex]\( x \)[/tex].
- Conclusion: It is a quadratic equation.
3. Equation: [tex]\( x^3 - 6x^2 + 8 = 0 \)[/tex]
- This equation contains the term [tex]\( x^3 \)[/tex], which represents a cubic term.
- Conclusion: It is not a quadratic equation.
4. Equation: [tex]\( 5x - 3 = 0 \)[/tex]
- This equation is a linear equation as it contains only [tex]\( x \)[/tex] without the [tex]\( x^2 \)[/tex] term.
- Conclusion: It is not a quadratic equation.
5. Equation: [tex]\( 5x - 1 = 3x + 8 \)[/tex]
- Rearrange the equation into the standard form:
- [tex]\( 5x - 1 - 3x - 8 = 0 \implies 2x - 9 = 0 \)[/tex]
- This rearrangement shows only the term [tex]\( x \)[/tex], without the [tex]\( x^2 \)[/tex] term.
- Conclusion: It is not a quadratic equation.
6. Equation: [tex]\( 9x^2 + 6x - 3 = 0 \)[/tex]
- This equation contains the term [tex]\( x^2 \)[/tex] and other terms involving [tex]\( x \)[/tex] and constants.
- Conclusion: It is a quadratic equation.
Based on the analysis of each equation, the quadratic equations are:
1. [tex]\( 2x^2 + 12x = 0 \)[/tex]
2. [tex]\( x^2 - 2x = 4x + 1 \)[/tex]
6. [tex]\( 9x^2 + 6x - 3 = 0 \)[/tex]
Therefore, the selected quadratic equations are:
[tex]\[ 2x^2 + 12x = 0, \quad x^2 - 2x = 4x + 1, \quad 9x^2 + 6x - 3 = 0. \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.