Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given equations represents a parabola with a vertex at [tex]\((0, -5)\)[/tex], we need to analyze each equation and identify the vertex of the parabola represented by it.
### Step-by-Step Analysis
1. Equation: [tex]\( y = x^2 + 5 \)[/tex]
- The general form of a parabola is [tex]\( y = a(x-h)^2 + k \)[/tex].
- By comparing [tex]\( y = x^2 + 5 \)[/tex] with [tex]\( y = a(x-h)^2 + k \)[/tex], we can see that [tex]\( h = 0 \)[/tex] and [tex]\( k = 5 \)[/tex].
- Therefore, the vertex of [tex]\( y = x^2 + 5 \)[/tex] is at [tex]\( (0, 5) \)[/tex].
- This does not match the given vertex [tex]\( (0, -5) \)[/tex].
2. Equation: [tex]\( y = x^2 - 5 \)[/tex]
- Again, comparing with [tex]\( y = a(x-h)^2 + k \)[/tex], we have [tex]\( h = 0 \)[/tex] and [tex]\( k = -5 \)[/tex].
- Therefore, the vertex of [tex]\( y = x^2 - 5 \)[/tex] is at [tex]\( (0, -5) \)[/tex].
- This matches the given vertex [tex]\( (0, -5) \)[/tex].
3. Equation: [tex]\( y = (x-5)^2 \)[/tex]
- Here, by comparing with [tex]\( y = a(x-h)^2 + k \)[/tex], we have [tex]\( h = 5 \)[/tex] and [tex]\( k = 0 \)[/tex].
- Therefore, the vertex of [tex]\( y = (x-5)^2 \)[/tex] is at [tex]\( (5, 0) \)[/tex].
- This does not match the given vertex [tex]\( (0, -5) \)[/tex].
4. Equation: [tex]\( y = (x+5)^2 \)[/tex]
- Comparing with [tex]\( y = a(x-h)^2 + k \)[/tex], we find [tex]\( h = -5 \)[/tex] and [tex]\( k = 0 \)[/tex].
- Therefore, the vertex of [tex]\( y = (x+5)^2 \)[/tex] is at [tex]\( (-5, 0) \)[/tex].
- This does not match the given vertex [tex]\( (0, -5) \)[/tex].
### Conclusion
After analyzing each equation, we can see that the equation which represents the parabola with a vertex at [tex]\((0, -5)\)[/tex] is:
[tex]\[ y = x^2 - 5 \][/tex]
So, the correct answer is [tex]\( \boxed{2} \)[/tex].
### Step-by-Step Analysis
1. Equation: [tex]\( y = x^2 + 5 \)[/tex]
- The general form of a parabola is [tex]\( y = a(x-h)^2 + k \)[/tex].
- By comparing [tex]\( y = x^2 + 5 \)[/tex] with [tex]\( y = a(x-h)^2 + k \)[/tex], we can see that [tex]\( h = 0 \)[/tex] and [tex]\( k = 5 \)[/tex].
- Therefore, the vertex of [tex]\( y = x^2 + 5 \)[/tex] is at [tex]\( (0, 5) \)[/tex].
- This does not match the given vertex [tex]\( (0, -5) \)[/tex].
2. Equation: [tex]\( y = x^2 - 5 \)[/tex]
- Again, comparing with [tex]\( y = a(x-h)^2 + k \)[/tex], we have [tex]\( h = 0 \)[/tex] and [tex]\( k = -5 \)[/tex].
- Therefore, the vertex of [tex]\( y = x^2 - 5 \)[/tex] is at [tex]\( (0, -5) \)[/tex].
- This matches the given vertex [tex]\( (0, -5) \)[/tex].
3. Equation: [tex]\( y = (x-5)^2 \)[/tex]
- Here, by comparing with [tex]\( y = a(x-h)^2 + k \)[/tex], we have [tex]\( h = 5 \)[/tex] and [tex]\( k = 0 \)[/tex].
- Therefore, the vertex of [tex]\( y = (x-5)^2 \)[/tex] is at [tex]\( (5, 0) \)[/tex].
- This does not match the given vertex [tex]\( (0, -5) \)[/tex].
4. Equation: [tex]\( y = (x+5)^2 \)[/tex]
- Comparing with [tex]\( y = a(x-h)^2 + k \)[/tex], we find [tex]\( h = -5 \)[/tex] and [tex]\( k = 0 \)[/tex].
- Therefore, the vertex of [tex]\( y = (x+5)^2 \)[/tex] is at [tex]\( (-5, 0) \)[/tex].
- This does not match the given vertex [tex]\( (0, -5) \)[/tex].
### Conclusion
After analyzing each equation, we can see that the equation which represents the parabola with a vertex at [tex]\((0, -5)\)[/tex] is:
[tex]\[ y = x^2 - 5 \][/tex]
So, the correct answer is [tex]\( \boxed{2} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.