Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine how much the electric potential energy has changed, we need to calculate the initial and final electric potential energies and then find the difference between them. Let's go through this step by step:
### Step 1: Define the Given Values
- Charge 1 ([tex]\( q_1 \)[/tex]): [tex]\( 2.55 \times 10^{-4} \)[/tex] Coulombs (C)
- Charge 2 ([tex]\( q_2 \)[/tex]): [tex]\( 7.62 \times 10^{-6} \)[/tex] Coulombs (C)
- Initial distance ([tex]\( r_{\text{initial}} \)[/tex]): [tex]\( 0.350 \)[/tex] meters (m)
- Final distance ([tex]\( r_{\text{final}} \)[/tex]): [tex]\( 1.55 \)[/tex] meters (m)
- Coulomb's constant ([tex]\( k \)[/tex]): [tex]\( 8.99 \times 10^9 \)[/tex] Newton square meters per square Coulomb (N·m²/C²)
### Step 2: Calculate the Initial Electric Potential Energy ([tex]\( U_{\text{initial}} \)[/tex])
The electric potential energy between two point charges is given by the formula:
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]
For the initial distance ([tex]\( r_{\text{initial}} = 0.350 \)[/tex] meters):
[tex]\[ U_{\text{initial}} = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times 2.55 \times 10^{-4} \, \text{C} \times 7.62 \times 10^{-6} \, \text{C}}{0.350 \, \text{m}} \][/tex]
### Step 3: Calculate the Final Electric Potential Energy ([tex]\( U_{\text{final}} \)[/tex])
For the final distance ([tex]\( r_{\text{final}} = 1.55 \)[/tex] meters):
[tex]\[ U_{\text{final}} = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times 2.55 \times 10^{-4} \, \text{C} \times 7.62 \times 10^{-6} \, \text{C}}{1.55 \, \text{m}} \][/tex]
### Step 4: Find the Change in Electric Potential Energy ([tex]\( \Delta U \)[/tex])
[tex]\[ \Delta U = U_{\text{final}} - U_{\text{initial}} \][/tex]
Using the given numerical results:
[tex]\[ U_{\text{initial}} \approx 49.90991142857143 \, \text{Joules (J)} \][/tex]
[tex]\[ U_{\text{final}} \approx 11.269979999999999 \, \text{Joules (J)} \][/tex]
The change in electric potential energy:
[tex]\[ \Delta U = 11.269979999999999 \, \text{J} - 49.90991142857143 \, \text{J} \][/tex]
[tex]\[ \Delta U \approx -38.63993142857143 \, \text{J} \][/tex]
### Conclusion
The electric potential energy has decreased by approximately [tex]\( 38.64 \)[/tex] Joules when the distance between the charges increased from [tex]\( 0.350 \)[/tex] meters to [tex]\( 1.55 \)[/tex] meters.
### Step 1: Define the Given Values
- Charge 1 ([tex]\( q_1 \)[/tex]): [tex]\( 2.55 \times 10^{-4} \)[/tex] Coulombs (C)
- Charge 2 ([tex]\( q_2 \)[/tex]): [tex]\( 7.62 \times 10^{-6} \)[/tex] Coulombs (C)
- Initial distance ([tex]\( r_{\text{initial}} \)[/tex]): [tex]\( 0.350 \)[/tex] meters (m)
- Final distance ([tex]\( r_{\text{final}} \)[/tex]): [tex]\( 1.55 \)[/tex] meters (m)
- Coulomb's constant ([tex]\( k \)[/tex]): [tex]\( 8.99 \times 10^9 \)[/tex] Newton square meters per square Coulomb (N·m²/C²)
### Step 2: Calculate the Initial Electric Potential Energy ([tex]\( U_{\text{initial}} \)[/tex])
The electric potential energy between two point charges is given by the formula:
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]
For the initial distance ([tex]\( r_{\text{initial}} = 0.350 \)[/tex] meters):
[tex]\[ U_{\text{initial}} = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times 2.55 \times 10^{-4} \, \text{C} \times 7.62 \times 10^{-6} \, \text{C}}{0.350 \, \text{m}} \][/tex]
### Step 3: Calculate the Final Electric Potential Energy ([tex]\( U_{\text{final}} \)[/tex])
For the final distance ([tex]\( r_{\text{final}} = 1.55 \)[/tex] meters):
[tex]\[ U_{\text{final}} = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times 2.55 \times 10^{-4} \, \text{C} \times 7.62 \times 10^{-6} \, \text{C}}{1.55 \, \text{m}} \][/tex]
### Step 4: Find the Change in Electric Potential Energy ([tex]\( \Delta U \)[/tex])
[tex]\[ \Delta U = U_{\text{final}} - U_{\text{initial}} \][/tex]
Using the given numerical results:
[tex]\[ U_{\text{initial}} \approx 49.90991142857143 \, \text{Joules (J)} \][/tex]
[tex]\[ U_{\text{final}} \approx 11.269979999999999 \, \text{Joules (J)} \][/tex]
The change in electric potential energy:
[tex]\[ \Delta U = 11.269979999999999 \, \text{J} - 49.90991142857143 \, \text{J} \][/tex]
[tex]\[ \Delta U \approx -38.63993142857143 \, \text{J} \][/tex]
### Conclusion
The electric potential energy has decreased by approximately [tex]\( 38.64 \)[/tex] Joules when the distance between the charges increased from [tex]\( 0.350 \)[/tex] meters to [tex]\( 1.55 \)[/tex] meters.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.