Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A charge of [tex][tex]$2.55 \times 10^{-4} \, C$[/tex][/tex] is held [tex]0.350 \, m[/tex] from a second charge of [tex]7.62 \times 10^{-6} \, C$[/tex]. The second charge is released. When it reaches a distance of [tex]1.55 \, m[/tex] from the first charge, how much has the electric potential energy changed? (Unit = J)

Sagot :

To determine how much the electric potential energy has changed, we need to calculate the initial and final electric potential energies and then find the difference between them. Let's go through this step by step:

### Step 1: Define the Given Values
- Charge 1 ([tex]\( q_1 \)[/tex]): [tex]\( 2.55 \times 10^{-4} \)[/tex] Coulombs (C)
- Charge 2 ([tex]\( q_2 \)[/tex]): [tex]\( 7.62 \times 10^{-6} \)[/tex] Coulombs (C)
- Initial distance ([tex]\( r_{\text{initial}} \)[/tex]): [tex]\( 0.350 \)[/tex] meters (m)
- Final distance ([tex]\( r_{\text{final}} \)[/tex]): [tex]\( 1.55 \)[/tex] meters (m)
- Coulomb's constant ([tex]\( k \)[/tex]): [tex]\( 8.99 \times 10^9 \)[/tex] Newton square meters per square Coulomb (N·m²/C²)

### Step 2: Calculate the Initial Electric Potential Energy ([tex]\( U_{\text{initial}} \)[/tex])
The electric potential energy between two point charges is given by the formula:
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]

For the initial distance ([tex]\( r_{\text{initial}} = 0.350 \)[/tex] meters):
[tex]\[ U_{\text{initial}} = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times 2.55 \times 10^{-4} \, \text{C} \times 7.62 \times 10^{-6} \, \text{C}}{0.350 \, \text{m}} \][/tex]

### Step 3: Calculate the Final Electric Potential Energy ([tex]\( U_{\text{final}} \)[/tex])
For the final distance ([tex]\( r_{\text{final}} = 1.55 \)[/tex] meters):
[tex]\[ U_{\text{final}} = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \times 2.55 \times 10^{-4} \, \text{C} \times 7.62 \times 10^{-6} \, \text{C}}{1.55 \, \text{m}} \][/tex]

### Step 4: Find the Change in Electric Potential Energy ([tex]\( \Delta U \)[/tex])
[tex]\[ \Delta U = U_{\text{final}} - U_{\text{initial}} \][/tex]

Using the given numerical results:
[tex]\[ U_{\text{initial}} \approx 49.90991142857143 \, \text{Joules (J)} \][/tex]
[tex]\[ U_{\text{final}} \approx 11.269979999999999 \, \text{Joules (J)} \][/tex]

The change in electric potential energy:
[tex]\[ \Delta U = 11.269979999999999 \, \text{J} - 49.90991142857143 \, \text{J} \][/tex]
[tex]\[ \Delta U \approx -38.63993142857143 \, \text{J} \][/tex]

### Conclusion
The electric potential energy has decreased by approximately [tex]\( 38.64 \)[/tex] Joules when the distance between the charges increased from [tex]\( 0.350 \)[/tex] meters to [tex]\( 1.55 \)[/tex] meters.