Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the quadratic equation [tex]\( x^2 - 8x + 3 = 0 \)[/tex] by completing the square, follow these steps:
1. Move the constant term to the other side of the equation:
[tex]\[ x^2 - 8x = -3 \][/tex]
2. Complete the square on the left side:
To complete the square, we need to take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation.
The coefficient of [tex]\( x \)[/tex] is [tex]\(-8\)[/tex], so half of that is [tex]\( -4 \)[/tex], and squaring it gives:
[tex]\[ \left( \frac{-8}{2} \right)^2 = 4^2 = 16 \][/tex]
Add this value to both sides of the equation:
[tex]\[ x^2 - 8x + 16 = -3 + 16 \][/tex]
3. Simplify the equation:
[tex]\[ x^2 - 8x + 16 = 13 \][/tex]
4. Express the left side as a perfect square:
The left side of the equation is a perfect square trinomial:
[tex]\[ (x - 4)^2 = 13 \][/tex]
So, the equation used in the process is:
[tex]\[ (x - 4)^2 = 13 \][/tex]
Hence, the correct option is:
[tex]\[ (x - 4)^2 = 13 \][/tex]
1. Move the constant term to the other side of the equation:
[tex]\[ x^2 - 8x = -3 \][/tex]
2. Complete the square on the left side:
To complete the square, we need to take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation.
The coefficient of [tex]\( x \)[/tex] is [tex]\(-8\)[/tex], so half of that is [tex]\( -4 \)[/tex], and squaring it gives:
[tex]\[ \left( \frac{-8}{2} \right)^2 = 4^2 = 16 \][/tex]
Add this value to both sides of the equation:
[tex]\[ x^2 - 8x + 16 = -3 + 16 \][/tex]
3. Simplify the equation:
[tex]\[ x^2 - 8x + 16 = 13 \][/tex]
4. Express the left side as a perfect square:
The left side of the equation is a perfect square trinomial:
[tex]\[ (x - 4)^2 = 13 \][/tex]
So, the equation used in the process is:
[tex]\[ (x - 4)^2 = 13 \][/tex]
Hence, the correct option is:
[tex]\[ (x - 4)^2 = 13 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.