At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we'll determine the sample mean of the outcomes and then identify the probability associated with this mean.
### Step-by-Step Solution:
1. Identify the Outcomes:
We're given the outcomes [tex]\(2, 0, 1\)[/tex].
2. Calculate the Sample Mean:
The sample mean [tex]\(\bar{x}\)[/tex] is calculated by summing the outcomes and then dividing by the number of outcomes.
[tex]$ \bar{x} = \frac{\sum \text{outcomes}}{\text{number of outcomes}} $[/tex]
For our specific outcomes:
[tex]$ \bar{x} = \frac{2 + 0 + 1}{3} $[/tex]
[tex]$ \bar{x} = \frac{3}{3} $[/tex]
[tex]$ \bar{x} = 1 $[/tex]
3. Given Probabilities:
We need to check the probabilities provided in the model:
- [tex]\( p = 0.5 \)[/tex]
- [tex]\( p = 0.02 \)[/tex]
- [tex]\( p = 0.4 \)[/tex]
4. Determine the Correct Probability:
We need to find which probability matches the outcome and the sample mean. According to the problem statement, each probability can be considered for the exact sample mean.
5. Conclusion:
The correct tuple where the sample mean [tex]\(\bar{x}\)[/tex] is [tex]\(1\)[/tex] and the probability [tex]\(p\)[/tex] is [tex]\(0.5\)[/tex].
The correct answer to the problem is:
[tex]\( (\bar{x} = 1, p = 0.5) \)[/tex].
Therefore, the outcome 2, 0, 1 has a sample mean of [tex]\(1\)[/tex] and a probability of [tex]\(0.5\)[/tex].
### Step-by-Step Solution:
1. Identify the Outcomes:
We're given the outcomes [tex]\(2, 0, 1\)[/tex].
2. Calculate the Sample Mean:
The sample mean [tex]\(\bar{x}\)[/tex] is calculated by summing the outcomes and then dividing by the number of outcomes.
[tex]$ \bar{x} = \frac{\sum \text{outcomes}}{\text{number of outcomes}} $[/tex]
For our specific outcomes:
[tex]$ \bar{x} = \frac{2 + 0 + 1}{3} $[/tex]
[tex]$ \bar{x} = \frac{3}{3} $[/tex]
[tex]$ \bar{x} = 1 $[/tex]
3. Given Probabilities:
We need to check the probabilities provided in the model:
- [tex]\( p = 0.5 \)[/tex]
- [tex]\( p = 0.02 \)[/tex]
- [tex]\( p = 0.4 \)[/tex]
4. Determine the Correct Probability:
We need to find which probability matches the outcome and the sample mean. According to the problem statement, each probability can be considered for the exact sample mean.
5. Conclusion:
The correct tuple where the sample mean [tex]\(\bar{x}\)[/tex] is [tex]\(1\)[/tex] and the probability [tex]\(p\)[/tex] is [tex]\(0.5\)[/tex].
The correct answer to the problem is:
[tex]\( (\bar{x} = 1, p = 0.5) \)[/tex].
Therefore, the outcome 2, 0, 1 has a sample mean of [tex]\(1\)[/tex] and a probability of [tex]\(0.5\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.