Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's find the electric potential energy between two charges. We’ll go through the steps methodically.
### Given:
1. The first charge, [tex]\( q_1 = -4.33 \times 10^{-6} \)[/tex] Coulombs.
2. The second charge, [tex]\( q_2 = -7.81 \times 10^{-4} \)[/tex] Coulombs.
3. The distance between the charges, [tex]\( r = 0.525 \)[/tex] meters.
4. Coulomb's constant, [tex]\( k = 8.988 \times 10^9 \)[/tex] [tex]\( \text{N m}^2/\text{C}^2 \)[/tex].
### Formula for Electric Potential Energy:
The electric potential energy ([tex]\( U \)[/tex]) between two point charges is given by:
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]
### Steps to Calculate:
1. Substitute the values into the formula:
[tex]\[ U = \frac{ (8.988 \times 10^9) \cdot (-4.33 \times 10^{-6}) \cdot (-7.81 \times 10^{-4}) } { 0.525 } \][/tex]
2. Multiplication of like terms:
- Multiply the values within the numerator.
[tex]\[ -4.33 \times 10^{-6} \times -7.81 \times 10^{-4} = 3.380634 \times 10^{-9} \][/tex]
- Note that the product of two negative numbers is positive.
3. Numerator after incorporating Coulomb's constant:
[tex]\[ (8.988 \times 10^9) \times 3.380634 \times 10^{-9} = 30.394713592 \][/tex]
4. Dividing by the distance:
[tex]\[ \frac{30.394713592}{0.525} = 57.8952176 \][/tex]
### Conclusion:
The electric potential energy between these two charges is therefore:
[tex]\[ U = 57.8952176 \text{ Joules} \][/tex]
This result takes into account the appropriate signs and constants, confirming the calculations are precise and consistent.
So, the electric potential energy of the two charges is [tex]\( U = 57.8952176 \text{ Joules} \)[/tex].
### Given:
1. The first charge, [tex]\( q_1 = -4.33 \times 10^{-6} \)[/tex] Coulombs.
2. The second charge, [tex]\( q_2 = -7.81 \times 10^{-4} \)[/tex] Coulombs.
3. The distance between the charges, [tex]\( r = 0.525 \)[/tex] meters.
4. Coulomb's constant, [tex]\( k = 8.988 \times 10^9 \)[/tex] [tex]\( \text{N m}^2/\text{C}^2 \)[/tex].
### Formula for Electric Potential Energy:
The electric potential energy ([tex]\( U \)[/tex]) between two point charges is given by:
[tex]\[ U = \frac{k \cdot q_1 \cdot q_2}{r} \][/tex]
### Steps to Calculate:
1. Substitute the values into the formula:
[tex]\[ U = \frac{ (8.988 \times 10^9) \cdot (-4.33 \times 10^{-6}) \cdot (-7.81 \times 10^{-4}) } { 0.525 } \][/tex]
2. Multiplication of like terms:
- Multiply the values within the numerator.
[tex]\[ -4.33 \times 10^{-6} \times -7.81 \times 10^{-4} = 3.380634 \times 10^{-9} \][/tex]
- Note that the product of two negative numbers is positive.
3. Numerator after incorporating Coulomb's constant:
[tex]\[ (8.988 \times 10^9) \times 3.380634 \times 10^{-9} = 30.394713592 \][/tex]
4. Dividing by the distance:
[tex]\[ \frac{30.394713592}{0.525} = 57.8952176 \][/tex]
### Conclusion:
The electric potential energy between these two charges is therefore:
[tex]\[ U = 57.8952176 \text{ Joules} \][/tex]
This result takes into account the appropriate signs and constants, confirming the calculations are precise and consistent.
So, the electric potential energy of the two charges is [tex]\( U = 57.8952176 \text{ Joules} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.